Expert consensus on evidence-based recommendations for the diagnosis, treatment, and follow-up of X-linked hypophosphatemic rickets (XLH)
PDF

Keywords

Fibroblast Growth Factor-23
Diagnosis
Therapeutics
Consensus
Hypophosphatemic
Rickets

How to Cite

1.
Cárdenas Aguilera JG, Medina-Orjuela A, Meza-Martínez AI, Prieto JC, Zarante-Bahamón AM, Cáceres-Mosquera JA, Mejía-Gaviria N, Serrano-Gayubo AK, Baquero-Rodríguez R, Chacón-Acevedo K, Guerrero-Tinoco GA, Uribe-Ríos A, García-Rueda MF, Abad-Londoño V, Nossa-Almanza SA, Aroca-Martínez G, Román-González A, Endo-Cáceres JA, Llano-Linares JP, Florenzano P, Díaz-Curiel M, Vaisbich MH, Zanchetta MB, Guerra-Hernández NE, Stefano EE, Brunetto O. Expert consensus on evidence-based recommendations for the diagnosis, treatment, and follow-up of X-linked hypophosphatemic rickets (XLH). Rev. Colomb. Nefrol. [Internet]. 2024 Mar. 4 [cited 2024 Apr. 27];11(1). Available from: https://revistanefrologia.org/index.php/rcn/article/view/754

Abstract

Introduction: X-linked hypophosphatemic rickets is a hereditary condition causing disruptions in bone mineral homeostasis. The morbidity associated with this condition has exhibited variability in previous decades, possibly stemming from variations in case definitions and diagnostic confirmation procedures.

Objective: Our aim was to generate evidence-informed recommendations for the diagnosis, treatment, and follow-up of patients with suspected or diagnosed XLH.

Methodology: Integration of a literature review with a modified Delphi method, guided by expert consensus.

Results: Following the screening and selection of 1041 documents, 41 were chosen to address the queries posed by the developer group. Experts, consulted through a modified Delphi consensus, endorsed 97 recommendations on the diagnosis, treatment, and follow-up of patients with suspected or diagnosed XLH. Notably, the quality of the evidence was deemed to be low.

Conclusions: The recommendations proposed here will allow early and timely diagnosis of X-linked hypophosphatemic rickets, while optimizing resources for its treatment and follow-up. In addition, it will help clarify the burden of the disease and improve health outcomes for this population.

https://doi.org/10.22265/acnef.11.1.754
PDF

References

Giannini S, Bianchi ML, Rendina D, Massoletti P, Lazzerini D, Brandi ML. Burden of disease and clinical targets in adult patients with X-linked hypophosphatemia. A comprehensive review. Osteoporos Int. 2021;32(10):1937–49. https://doi.org/10.1210/jendso/bvab054

Dahir K, Roberts MS, Krolczyk S, Simmons JH. X-linked hypophosphatemia: A new era in management. J Endocr Soc. 2020;4(12):1–15. https://doi.org/10.1210/jendso/bvaa151

López-Romero LC, Broseta JJ, Guillén Olmos E, Devesa-Such RJ, Hernández-Jaras J. Raquitismo hipofosfatémico ligado al cromosoma X: diagnóstico en la edad adulta y forma paucisintomática. Reumatol Clínica. 2021;17(2):116–7. https://doi.org/10.1016/j.reuma.2019.07.007

Whyte MP, Schranck FW, Armamento-Villareal R. X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J Clin Endocrinol Metab. 1996 Nov 1;81(11):4075–80. https://doi.org/10.1210/jcem.81.11.8923863

Yuan B, Takaiwa M, Clemens TL, Feng JQ, Kumar R, Rowe PS, et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest. 2008 Feb 1;118(2):722–34. https://doi.org/10.1172/JCI32702

Ho BB, Bergwitz C. FGF23 signaling and physiology. J Mol Endocrinol. 2021;66(2):R23–32. https://doi.org/10.1530/JME-20-0178

Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol. 2019;15(7):435–55. https://doi.org/10.1038/s41581-019-0152-5

Laurent MR, De Schepper J, Trouet D, Godefroid N, Boros E, Heinrichs C, et al. Consensus Recommendations for the Diagnosis and Management of X-Linked Hypophosphatemia in Belgium. Front Endocrinol (Lausanne). 2021;12(March):1–20. https://doi.org/10.3389/fendo.2021.641543

Padidela R, Cheung MS, Saraff V, Dharmaraj P. Clinical guidelines for burosumab in the treatment of XLH in children and adolescents: British paediatric and adolescent bone group recommendations. Endocr Connect. 2020;9(10):1051–6. https://doi.org/10.1530/EC-20-0291

Al Juraibah F, Al Amiri E, Al Dubayee M, Al Jubeh J, Al Kandari H, Al Sagheir A, et al. Diagnosis and management of X-linked hypophosphatemia in children and adolescent in the Gulf Cooperation Council countries. Arch Osteoporos. 2021;16(1). https://doi.org/10.1007/s11657-021-00879-9

Del Pino M, Viterbo G, Fano V. GAP2017 Manejo de Niños con Raquitismo Hipofosfatémico Familiar ?Internet?. Hospital de pediatría Garrahan:2017 ?Citado el 20 de febrero de 2023?. Available at: https://www.garrahan.gov.ar/images/intranet/guias_atencion/GAP_2017_-_MANEJO_RAQUITISMO.pdf

Lin X, Li S, Zhang Z, Yue H. Clinical and Genetic Characteristics of 153 Chinese Patients With X-Linked Hypophosphatemia. Front. Cell Dev. Biol. 2021;9:1177. https://doi.org/10.3389/fcell.2021.617738

Smith PS, Gottesman GS, Zhang F, Cook F, Ramirez B, Wenkert D, et al. X?Linked Hypophosphatemia: Uniquely Mild Disease Associated With PHEX 3??UTR Mutation c.* 231A> G (A Retrospective Case–Control Study). J Bone Miner Res. 2020;35(5):920–31. https://doi.org/10.1002/jbmr.3955

Lempicki M, Rothenbuhler A, Merzoug V, Franchi-Abella S, Chaussain C, Adamsbaum C, et al. Magnetic Resonance Imaging Features as Surrogate Markers of X-Linked Hypophosphatemic Rickets Activity. Horm Res Paediatr. 2017;87(4):244–53. https://doi.org/10.1159/000464142

Beck-Nielsen SS, Brixen K, Gram J, Mølgaard C. High bone mineral apparent density in children with X-linked hypophosphatemia. Osteoporos Int. 2013;24(8):2215–21. https://doi.org/10.1007/s00198-013-2286-9

Imel EA, White KE. Pharmacological management of X-linked hypophosphataemia. Br J Clin Pharmacol. 2019;85(6):1188–98. https://doi.org/10.1111/bcp.13763

Živi?njak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, et al. Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol. 2011;26(2):223–31. https://doi.org/10.1007/s00467-010-1705-9

Seefried L, Smyth M, Keen R, Harvengt P. Burden of disease associated with X-linked hypophosphataemia in adults: a systematic literature review. Osteoporos Int. 2021;32(1):7–22. https://doi.org/10.1007/s00198-020-05548-0

Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58(5):854–68. https://doi.org/10.1373/clinchem.2011.177741

D’Isa DG, Chilelli C, Tau C, Viterbo G, Rubinstein M, Chaler E. Estimación del intervalo de referencia de calcio, fosforo y fosfatasa alcalina séricos en población pediátrica utilizando una base de datos por el método de Hoffman modificado. Med Infant. 2016;23(1):8–12.

Ruppe MD. X-Linked Hypophosphatemia. GeneReviews. 2017. Bookshelf ID: NBK83985PMID: 22319799

Ingraham SE, Patel HP. Evaluation of Renal Function in the Pediatric Patient. In: Clinician’s Manual Of Pediatric Nephrology. World Scientific; 2011. p. 20–36. https://doi.org/10.1142/9789814317887_0003

Tosur M. Modified nomogram for derivation of renal threshold phosphate concentration. Int Urol Nephrol. 2017;49(7):1309–10. https://doi.org/10.1007/s11255-017-1588-9

Kubota T, Kitaoka T, Miura K, Fujiwara M, Ohata Y, Miyoshi Y, et al. Serum fibroblast growth factor 23 is a useful marker to distinguish vitamin d-deficient rickets from hypophosphatemic rickets. Horm Res Paediatr. 2014;81(4):251–7. https://doi.org/10.1159/000357142

Lim R, Shailam R, Hulett R, Skrinar A, Nixon A, Williams A, et al. Validation of the Radiographic Global Impression of Change (RGI-C) score to assess healing of rickets in pediatric X-linked hypophosphatemia (XLH). Bone. 2021;148(April):115964. https://doi.org/10.1016/j.bone.2021.115964

Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Manaster BJ, Reading JC. Radiographic Scoring Method for the Assessment of the Severity of Nutritional Rickets. J Trop Pediatr. 2000;46. https://doi.org/10.1093/tropej/46.3.132

Beck-Nielsen SS, Brixen K, Gram J, Mølgaard C. High bone mineral apparent density in children with X-linked hypophosphatemia. Osteoporos Int. 2013;24(8):2215–21. https://doi.org/10.1007/s00198-013-2286-9

Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect. 2014;3(1):R13–30. https://doi.org/10.1530/EC-13-0103

Sharkey MS, Grunseich K, Carpenter TO. Contemporary Medical and Surgical Management of X-linked Hypophosphatemic Rickets. J Am Acad Orthop Surg. 2015;23(7):433–42. https://doi.org/10.5435/JAAOS-D-14-00082

Carpenter TO, Imel EA, Holm IA, Jan de Beur S, Insogna KL. A Clinician’s Guide to X-Linked hypophosphatemia. J Bone Min Res. 2011;26(7):1381–8. https://doi.org/10.1002/jbmr.340

Lecoq AL, Brandi ML, Linglart A, Kamenický P. Management of X-linked hypophosphatemia in adults. Metabolism. 2020;103:154049. https://doi.org/10.1016/j.metabol.2019.154049

Lamb YN. Burosumab: First Global Approval. Drugs. 2018;78(6):707–14. https://doi.org/10.1007/s40265-018-0905-7

Pharmacoeconomic Review Report (Resubmission): NUSINERSEN (SPINRAZA): (Biogen Canada Inc.): Indication: Treatment of patients with 5q spinal muscular atrophy [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2019 Apr. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542535/.

Brener A, Lebenthal Y, Cleper R, Kapusta L, Zeitlin L. Body composition and cardiometabolic health of pediatric patients with X-linked hypophosphatemia (XLH) under burosumab therapy [Internet]. Ther Adv Endocrinol Metab. 2021. Available at: https://doi.org/10.1177/20420188211001150

Insogna KL, Briot K, Imel EA, Kamenický P, Ruppe MD, Portale AA, et al. A randomized, double?blind, placebo?controlled, phase 3 trial evaluating the efficacy of burosumab, an anti?FGF23 antibody, in adults with X?linked hypophosphatemia: week 24 primary analysis. J Bone Miner Res. 2018;33(8):1383–93. https://doi.org/10.1002/jbmr.3475

Bacchetta J, Rothenbuhler A, Gueorguieva I, Kamenicky P, Salles J-P, Briot K, et al. X-linked hypophosphatemia and burosumab: Practical clinical points from the French experience. Jt Bone Spine. 2021;88(5):105208. https://doi.org/10.1016/j.jbspin.2021.105208

Martín-Ramos S, Gil-Calvo M, Roldán V, Castellano-Martínez A, Santos F. Positive Response to One-Year Treatment with Burosumab in Pediatric Patients With X-Linked Hypophosphatemia. Front Pediatr. 2020;8(February):1–5. https://doi.org/10.3389/fped.2020.00048

Gizard A, Rothenbuhler A, Pejin Z, Finidori G, Glorion C, de Billy B, et al. Outcomes of orthopedic surgery in a cohort of 49 patients with X-linked hypophosphatemic rickets (XLHR). Endocr Connect. 2017;6(8):566–73. https://doi.org/10.1530/EC-17-0154

Stéfano E. Tratamiento ortopédico de XLH. In: Raquitismo hipofosfatémico familiar Archivos latinoamericanos de nefrología pediátrica. 2019. p. 182.

Horn A, Wright J, Bockenhauer D, Van’t Hoff W, Eastwood DM. The orthopaedic management of lower limb deformity in hypophosphataemic rickets. J Child Orthop. 2017;11(4):298–305. https://doi.org/10.1302/1863-2548.11.170003

Rafaelsen S, Johansson S, Ræder H, Bjerknes R. Hereditary hypophosphatemia in Norway: A retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur J Endocrinol. 2016;174(2):125–36. https://doi.org/10.1530/EJE-15-0515

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Dimensions


PlumX


Downloads

Download data is not yet available.