Colombian Consensus for the Prevention of Chronic Kidney Disease in children with Low Birth Weight
PDF (Español)

Keywords

Chronic Kidney Disease
Premature Birth
Kangaroo Mother Care
Low birth weight

How to Cite

1.
Atehortúa Baena P, Cárdenas Aguilera JG, Baquero Rodríguez R, Lombo Ángela M, Castro Gaona AJ, Solano Suárez JM, Restrepo Ochoa DA. Colombian Consensus for the Prevention of Chronic Kidney Disease in children with Low Birth Weight. Rev. Colomb. Nefrol. [Internet]. 2023 May 5 [cited 2024 Apr. 27];10(1):e643. Available from: https://revistanefrologia.org/index.php/rcn/article/view/643

Abstract

Background: Low birth weight (LBW) is a risk factor for the development of Chronic Kidney Disease CKD increased probability of occurrence in adult life is up to 70 % and doubling the risk of CKD in children.

Purpose: Generate recommendations for prevention of chronic kidney disease in children with low birth weight, which seeks to optimize nephroprevention and follow-up strategies in this population.

Methodology: An expert consensus was made using modified Delphi from a search of literature on the topics of interest in the PubMed, Embase and Google Scholar data sources, there were no restrictions on the search by year, type of study or language.

Results: Structured recommendations were formulated in 5 strategies, Strategy 1. Recognize children with LBW as a population at risk of CKD. Strategy 2. Promote adequate growth in children with BPN through optimal nutrition. Strategy 3. Make a timely diagnosis of Acute Kidney Injury (AKI) in children with BPN and strategies for prevention and renal protection. Strategy 4. Evaluation of renal function in the immediate posnatal period. Strategy 5. Evaluation of renal function during the first two years of life and its follow-up.

Conclusions: The proposed recommendations will make it possible to timely define the risk of chronic kidney disease in patients with low birth weight, facilitating early intervention with nephroprevention and follow-up measures, for the prevention of this disease.

https://doi.org/10.22265/acnef.10.1.643
PDF (Español)

References

Chen TK, Knicely DH, Grams M. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA. 2019;322(13):1294-304. https://doi.org/10.1001/jama.2019.14745

D’Achiardi Rey R, Vargas JG, Echeverri JE, Moreno M, Quiroz G. Factores de riesgo de enfermedad renal crónica. Rev Fac Med. 2011;19(2):226-31. https://doi.org/10.18359/rmed.1283

The Low Birth Weight and Nephron Number Working Group. The Impact of Kidney Development on the Life Course: A Consensus Document for Action. Nephron. 2017;136(1):3-49. https://doi.org/10.1159/000457967

Starr MC, Hingorani S. Prematurity and Future Kidney Health: The Growing Risk of Chronic Kidney Disease. Curr Opini Pediat. 2018;30(2):228-35. https://doi.org/10.1097/MOP.0000000000000607

Ortega López PJ, Zamora Martí I. Peso al nacer y su repercusión nefrológica. Nefrología. 2011;4(1):1-10.

Peterson SM, Wang X, Johnson AC, Coate ID, Garrett MR, Didion SP. Estimation of nephron number in whole kidney using the acid maceration method. JoVE. 2019;147:e58599. https://doi.org/10.3791/58599

Hoogenboom LA, Wolfs TG, Hütten MC, Peutz-Kootstra CJ, Schreuder M. Prematurity, perinatal inflammatory stress, and the predisposition to develop chronic kidney disease beyond oligonephropathy. Pediatr Nephrol. 2021;36(7):1673-81. https://doi.org/10.1007/s00467-020-04712-2

Reguant Álvarez M, Torrado Fonseca M. El método Delphi. REIRE. 2016;9(2):87-102. https://doi.org/10.6018/j/263791

Jaimes MC. El método Delphi: cuando dos cabezas piensan más que una en el desarrollo de guías de práctica clínica. Rev Colomb Psiquiatr. 2009;38(1):185-93.

García Valdés M, Suárez Marín M. El método Delphi para la consulta a expertos en la investigación científica. Rev Cuba Salud Púb. 2013;39(2):253-67.

Almenara JC, Moro AI. Empleo del método Delphi y su empleo en la investigación en comunicación y educación. EDUTEC. 2014;48:A272. https://doi.org/10.21556/edutec.2014.48.187

OMS. Metas Mundiales de Nutricio?n 2025: documento normativo sobre bajo peso al nacer. Ginebra: Organizacio?n Mundial de la Salud; 2017.

Katz J, Lee AC, Kozuki N, Lawn JE, Cousens S, Blencowe H, et al. Mortality risk in preterm and small-for-gestational- age infants in low-income and middle-income countries: a pooled country analysis. Lancet. 2013;382(9890):417-25. https://doi.org/10.1016/S0140-6736(13)60993-9

Vladislava Zohdi MR, Sutherland KL, Gubhaju L, Zimanyi M, Black MJ. Low Birth Weight due to Intrauterine Growth Restriction and/or Preterm Birth: Effects on Nephron Number and Long-Term Renal Health. Int J Nephrol. 2012:136942. https://doi.org/10.1155/2012/136942

DANE. Datos de nacimientos en Colombia. Colombia: DANE. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/nacimientos-y-defunciones/nacimientos

Dyson A, Kent A. The Effect of Preterm Birth on Renal Development and Renal Health Outcome. NeoReviews. 2019;20(12):e725-36. https://doi.org/10.1542/neo.20-12-e725

Fryer HJ, Welsh GI. Renal Consequences of Therapeutic Interventions in Premature Neonates. Nephron. 2019;142(2):117-24. https://doi.org/10.1159/000497162

Sanderson K, Chang E, Bjornstad E, Hogan S, Hu Y, Askenazi D, et al.Albuminuria, Hypertension, and Reduced Kidney Volumes in Adolescents Born Extremely Premature. Am J Perinatol. 2019;36(S02):S33-6. https://doi.org/10.3389/fped.2020.00230

Stritzke A, Thomas S, Amin H, Fusch C, Lodha A. Renal consequences of preterm birth. Mol Cell Pediatr. 2017;4:2. https://doi.org/10.1186/s40348-016-0068-0

Fanos V, Gerosa C, Loddo C, Faa G. State of the Art on Kidney Development: How Nephron Endowment at Birth Can Shape Our Susceptibility to Renal Dysfunction Later in Life. Am J Perinatol. 2019;36(S02):S33-6. https://doi.org/10.1055/s-0039-1691798

Senra JC, Carvalho MA, Rodrigues AS, Krebs VL, Gibelli MA, Francisco RP, et al. An unfavorable intrauterine environment may determine renal functional capacity in adulthood: a meta-analysis. Clinics. 2018;73:e401. https://doi.org/10.6061/clinics/2018/e401

Luyckx V, Perico N, Somaschini M, Manfellotto D, Valensise H, Cetin I, et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet. 2017;390:424-8. http://dx.doi.org/10.1016/S0140-6736(17)30576-7

Ministerio de Salud y Protección Social. Lineamiento técnico y operativo de la ruta integral de atención en salud materno perinatal. Colombia: Ministerio de Salud y Protección Social. https://www.dssa.gov.co/images/documentos/Lineamiento_materno_perinatal.pdf

Rogido M, Griffin I. Macronutrient Digestion and Absorption in the Preterm Infant. Neoreviews. 2019;20(1):e25-36. https://doi.org/10.1542/neo.20-1-e25

Moody L, Chen H, Pan YX. Early-Life Nutritional Programming of Cognition-The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process. Adv Nutr. 2017;8(2):337-50. https://doi.org/10.3945/an.116.014209

Joosten K, Embleton N, Yan W, Senterre T. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin Nutr. 2018;37(6):2309-14. https://doi.org/10.1016/j.clnu.2018.06.944

Uauy R, Koletzko B. Defining the nutritional needs of preterm infants. World Rev Nutr Diet. 2014;110:4-10. https://doi.org/10.1159/000358453

Kapellou O, Counsell SJ, Kennea N, Dyet L, Saeed N, Stark J, et al. Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth. PLOS Med. 2006;3(8):e265. https://doi.org/10.1371/journal.pmed.0030265

Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4):1253-61. https://doi.org/10.1542/peds.2005-1368

The Neonatal Research Network. Video lectures: neonatal research. The Neonatal Research Network; 2021. https://www.neonatalresearch.net/video-lectures.html

Embleton NE, Pang N, Cooke RJ. Posnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics. 2001;107(2):270-3. https://doi.org/10.1542/peds.107.2.270

Granger CL, Embleton ND, Palmer JM, Lamb CA, Berrington JE, Stewart CJ. Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatr. 2021;110(2):450-7. https://doi.org/10.1111/apa.15534

Senterre T, Rigo J. Reduction in posnatal cumulative nutritional deficit and improvement of growth in extremely preterm infants. Acta Paediatr. 2012;101(2):e64-70. https://doi.org/10.1111/j.1651-2227.2011.02443.x

Jacobi SK, Odle J. Nutritional factors influencing intestinal health of the neonate. Adv Nutr. 2012;3(5):687-96. https://doi.org/10.3945/an.112.002683

Milliku K, Moraes T, Becker A, Mandhane P, Sears M, Turvey S, et al. Breastfeeding in the first days of life is associated with lower blood pressure at 3 years of age. JAHA. 2021;10:e01906. https://doi.org/10.1161/JAHA.120.019067

Nasuf AW, Ojha S, Dorling J. Oropharyngeal colostrum in preventing mortality and morbidity in preterm infants. Cochrane. 2018;9(9):CD011921. https://doi.org/10.1002/14651858.CD011921.pub2

de Halleux V, Pieltain C, Senterre T, Studzinski F, Kessen C, Rigo V, et al. Growth benefits of own mother’s milk in preterm infants fed daily individualized fortified human milk. Nutrients. 2019;11(4):772. https://doi.org/10.3390/nu11040772

Kumar RK, Singhal A, Vaidya U, Banerjee S, Anwar F, Rao S. Optimizing Nutrition in Preterm Low Birth Weight Infants-Consensus Summary. Front Nutr. 2017;4:20. https://doi.org/10.3389/fnut.2017.00020

Dorling J, Abbott J, Berrington J, Bosiak B, Bowler U, Boyle E, et al. Controlled Trial of Two Incremental Milk-Feeding Rates in Preterm Infants. N Engl J Med. 2019;381(15):1434-43. https://doi.org/10.1056/NEJMoa1816654

Brown JV, Embleton ND, Harding JE, McGuire W. Multi-nutrient fortification of human milk for preterm infants. Cochrane. 2016;(5):CD000343. https://doi.org/10.1002/14651858.CD000343.pub3

Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85-91. https://doi.org/10.1097/MPG.0b013e3181adaee0

Arslanoglu S, Boquien CY, King C, Lamireau D, Tonetto P, Barnett D, et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front Pediatr. 2019;7:76. https://doi.org/10.3389/fped.2019.00076

Sola A, Mir R, Fariña D. XII Consenso Clínico de Sociedad Iberoamericana de Neonatología: actualización Nutrición del Recién Nacido Sano y Enfermo. Santa Cruz: Sociedad Iberoamericana de Neonatología (SIBEN); 2020.

Embleton NE, Simmer K. Practice of Parenteral Nutrition in VLBW and ELBW Infants. En: Koletzko B, Poindexter B, Uauy R, editores. Nutritional Care of Preterm Infants: Scientific Basis and Practical Guidelines; 2014. https://doi.org/10.1159/000358466

Hay WW, Brown LD, Denne SC. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants. World Rev Nutr Diet. 2014;110:64-81. https://doi.org/10.1159/000358459

Ministerio de Salud y Protección Social. Actualización de los Lineamientos Técnicos para la implementación de Programas Madre Canguro en Colombia, con énfasis en la nutrición del neonato prematuro o de bajo peso al nacer. Bogota?: Ministerio de Salud y Protección Social; 2017.

Hay WW, Ziegler EE. Growth failure among preterm infants due to insufficient protein is not innocuous and must be prevented. J Perinatol. 2016;36(7):500-2. https://doi.org/10.1038/jp.2016.85

Embleton ND, Korada M, Wood CL, Pearce MS, Swamy R, Cheetham TD. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch Dis Child. 2016;101(11):1026-31. https://doi.org/10.1136/archdischild-2015-310190

Bohórquez Peñaranda AP, Charpak N. Guías de práctica clínica basadas en evidencia para la óptima utilización del Método Madre Canguro de cuidados en el recién nacido pretérmino y/o de bajo peso al nacer. Actualización 2007 - 2017. Bogota?: Fundación Canguro; 2021.

Mekonnen AG, Yehualashet SS, Bayleyegn AD. The effects of kangaroo mother care on the time to breastfeeding initiation among preterm and LBW infants: a meta-analysis of published studies. Int Breastfeed J. 2019;14:12. https://doi.org/10.1186/s13006-019-0206-0

Conde-Agudelo A, Díaz-Rossello JL. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst Rev. 2016;(8):CD002771. https://doi.org/10.1002/14651858.CD002771.pub4

Charpak N, Montealegre-Pomar A, Bohorquez A. Systematic review and meta-analysis suggest that the duration of Kangaroo mother care has a direct impact on neonatal growth. Acta Paediatr. 2021;110(1):45-59. https://doi.org/10.1111/apa.15489

Heller N, Rüdiger M, Hoffmeister V, Mense L. Mother’s Own Milk Feeding in Preterm Newborns Admitted to the Neonatal Intensive Care Unit or Special-Care Nursery: Obstacles, Interventions, Risk Calculation. Int J Environ Res Public Health. 2021;18:4140. https://doi.org/10.3390/ijerph18084140

Oras P, Thernström Blomqvist Y, Hedberg Nyqvist K, Gradin M, Rubertsson C, Hellström-Westas L, et al. Skin-to-skin contact is associated with earlier breastfeeding attainment in preterm infants. Acta Paediatr. 2016;105(7):783-9. https://doi.org/10.1111/apa.13431

Abrams SA, Hurst NM. Breast milk expression for the preterm infant; 2021. https://bit.ly/2VBp9YI

Ziegler EE. II. Advantages of Human Milk in Feeding Premature Infants. J Pediatr Gastroenterol Nutr. 2015;61(1):S3. https://doi.org/10.1097/01.mpg.0000471450.47871.ff

Arslanoglu S, Corpeleijn W, Moro G, Braegger C, Campoy C, Colomb V, et al. Donor human milk for preterm infants: current evidence and research directions. J Pediatr Gastroenterol Nutr. 2013;57(4):535-42. https://doi.org/10.1097/MPG.0b013e3182a3af0a

American Academy of Pediatrics. Breastfeeding and the Use of Human Milk. Eidelman AI, Schanler RJ, Johnston M, Landers S, Noble L, Szucs K, et al., editores. Pediatrics. 2012;129(3):e827-41. https://doi.org/10.1542/peds.2011-3552

Maffei D, Schanler RJ. Human milk is the feeding strategy to prevent necrotizing enterocolitis! Semin Perinatol. 2017;41(1):36-40. https://doi.org/10.1053/j.semperi.2016.09.016

Buckle A, Taylor C. Cost and Cost-Effectiveness of Donor Human Milk to Prevent Necrotizing Enterocolitis: Systematic Review. Breastfeed Med. 2017;12(9):528-36. https://doi.org/10.1089/bfm.2017.0057

Calvo J, García Lara NR, Gormaz M, Peña M, Martínez Lorenzo MJ, Ortiz Murillo P, et al. Recommendations for the creation and operation of maternal milk banks in Spain. An Pediatría. 2018;89(1):65.e1-6. https://doi.org/10.1016/j.anpede.2018.01.007

Healy DB, Brennan AM, O’Donovan R, Daly V, Doolan A, Dempsey EM. Structured promotion of breastmilk expression is associated with shortened hospitalisation for very preterm infants. Acta Paediatr. 2016;105(6):e252-6. https://doi.org/10.1111/apa.13399

Bharwani SK, Green BF, Pezzullo JC, Bharwani SS, Bharwani SS, Dhanireddy R. Systematic review and meta-analysis of human milk intake and retinopathy of prematurity: a significant update. J Perinatol. 2016;36(11):913-20. https://doi.org/10.1038/jp.2016.98

Larena Fernández I, Vara Callau M, Royo Pérez D, López Bernués R, Cortés Sierra J, Samper Villagrasa MP. Estudio de los efectos de la implantación de un banco de leche donada en los recién nacidos pretérmino en Aragón. Enfermería Clín. 2015;25(2):57-63. https://doi.org/10.1016/j.enfcli.2014.08.003

Johnson TJ, Berenz A, Wicks J, Esquerra-Zwiers A, Sulo KS, Gross ME, et al. The Economic Impact of Donor Milk in the Neonatal Intensive Care Unit. J Pediatr. 2020;224:57-65.e4. https://doi.org/10.1016/j.jpeds.2020.04.044

Quitadamo PA, Palumbo G, Cianti L, Lurdo P, Gentile MA, Villani A. The Revolution of Breast Milk: The Multiple Role of Human Milk Banking between Evidence and Experience-A Narrative Review. Int J Pediatr. 2021:6682516. https://doi.org/10.1155/2021/6682516

University of Calgary. Fenton Preterm Growth Charts. Canadá: University of Calgary. https://ucalgary.ca/resource/preterm-growth-chart/preterm-growth-chart

Sweetman DU. Neonatal acute kidney injury-Severity and recovery prediction and the role of serum and urinary biomarkers. Early Hum Dev. 2017;105:57-61. https://doi.org/10.1016/j.earlhumdev.2016.12.006

Elmas AT, Tabel Y ÖR. Risk factors and mortality rate in premature babies with acute kidney injury. J Clin Lab Anal. 2018;32:e22441. https://doi.org/10.1002/jcla.22441

Charlton JR, Boohaker L, Askenazi D, Brophy PD, D’Angio C, Fuloria M, et al. Incidence and risk factors of early onset neonatal AKI. Clin J Am Soc Nephrol 14. 2019;14:184-95. https://doi.org/10.2215/CJN.03670318

Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Heal. 2017;1:184-94. https://doi.org/10.1016/S2352-4642(17)30069-X

Starr M, Kula A, Lieberman J, Menon S, Perkins AJ, Lam T, et al. The impact of increased awareness of acute kidney injury in the Neonatal Intensive Care Unit on acute kidney injury incidence and reporting: results of a retrospective cohort study. J Perinatol. 2020;40:1301-7. https://doi.org/10.1038/s41372-020-0725-y

Luyckx VA, Brenner B. Clinical consequences of developmental programming of low nephron number. Anat Rec (Hoboken). 2020;303(10):2613-31. https://doi.org/10.1002/ar.24270

Monteverde ML. Injuria renal aguda neonatal. Rev Nefrol Dial Traspl. 2019;39(2):134-48.

Murphy HJ, Thomas B, Van Wyk B, Tierney SB, Selewski DT, Jetton J. Nephrotoxic medications and acute kidney injury risk factors in the neonatal intensive care unit: clinical challenges for neonatologists and nephrologists. Pediatr Nephrol. 2020;35(11):2077-88. https://doi.org/10.1007/s00467-019-04350-3

McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol. 2017;32(11):2015-25. https://doi.org/10.1007/s00467-016-3533-z

Uber AM, Sutherland S. Nephrotoxins and nephrotoxic acute kidney injury. Pediatr Nephrol. 2020;35(10):1825-33. https://doi.org/10.1007/s00467-019-04397-2

Kastl J. Renal function in the fetus and neonate e the creatinine enigma. Semin Fetal Neonatal Med. 2017;22:83-9. https://doi.org/10.1016/j.siny.2016.12.002

Comité Nacional de Nefrología. Consenso de lesión renal aguda en el recién nacido [Acute kidney injury in the newborn: a consensus statement]. Arch Argent Pediatr. 2020 febr,;118(1):S50-8. https://doi.org/10.5546/aap.2020.s50

Baumgart S. Acute Problems of Prematurity: Balancing Fluid Volume and Electrolyte Replacements in Very Low Birth Weight and Extremely Low Birth Weight Neonates. En: Nephrology and Fluid/Electrolyte Physiology; 2012. https://doi.org/10.1016/B978-1-4377-2658-9.00012-1

Wright CJ, Posencheg MA, Seri I, Evans JR. Fluid, Electrolyte, and Acid-Base Balance. En: Avery’s Diseases of the Newborn; 2018. https://doi.org/10.1016/B978-0-323-40139-5.00030-9

Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, et al. Baby NINJA (Nephrotoxic Injury Negated by Just-in-Time Action): Reduction of Nephrotoxic Medication-Associated Acute Kidney Injury in the Neonatal Intensive Care Unit. J Pediatr. 2019;215:223-8. https://doi.org/10.1016/j.jpeds.2019.08.046

Salerno SN, Liao Y, Jackson W, Greenberg RG, McKinzie CJ, McCallister A, et al. Association between Nephrotoxic Drug Combinations and Acute Kidney Injury in the Neonatal Intensive Care Unit. J Pediatr. 2020;228:213-9. https://doi.org/10.1016/j.jpeds.2020.08.035

Guignard JP. Use of Diuretics in the Newborn. En: Nephrology and Fluid/electrolyte Physiology; 2019. https://doi.org/10.1016/B978-0-323-53367-6.00015-7

DANE. Nacimientos 2019. Colombia: DANE. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/nacimientos-y-defunciones/nacimientos/nacimientos-2019

Das S, Mannan M, Faruque A, Ahmed T, Mcintyre AM. Effect of birth weight on adulthood renal function: A bias-adjusted meta-analytic approach. Nephrology. 2016;21:547-65. https://doi.org/10.1111/nep.12732

Gilarska M, Raaijmakers A, Zhang Z, Staessen J, Levtchenko E, Kilmek M, et al. Extremely Low Birth Weight Predisposes to Impaired Renal Health: A Pooled Analysis. Kidney Blood Press Res. 2019;44:897-906. https://doi.org/10.1159/000502715

Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo G. Histomorphometric analysis of posnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2019;7(1):17-25. https://doi.org/10.1007/s10024-003-3029-2

De Mul A, Parvex P, Wilhelm-Bals M. Renal follow-up in pediatrician practice after discharge from neonatology units: about a survey. Eur J Pediatr. 2020;179(11):1721-7. https://doi.org/10.1007/s00431-020-03652-1

Chehade H, Simeoni U, Guignard JP, Boubred F. Preterm Birth: Long Term Cardiovascular and Renal Consequences. Curr Pediatr Rev. 2018;14(4):219-26. https://doi.org/10.2174/1573396314666180813121652

Coats LE, Davis GK, Newsome AD, Ojeda NB, Alexander B. Low Birth Weight, Blood Pressure and Renal Susceptibility. Curr Hypertens Rep. 2019;21(8):62. https://doi.org/10.1007/s11906-019-0969-0

Al Salmi I, Shaheen FAM, Hannawi S. Birth weight, gestational age, and blood pressure: Early life management strategy and population health perspective. Saudi J Kidney Dis Transpl. 2019;30(2):299-308. https://doi.org/10.4103/1319-2442.256836

Harer MW, Kent A. Neonatal hypertension: an educational review. Pediatr Nephrol. 2019;34:1009-18. https://doi.org/10.1007/s00467-018-3996-1

Nwankwo MU, Lorenz JM, Gardiner J. A standard protocol for blood pressure measurement in the newborn. Pediatrics. 1997;99(6):E10. https://doi.org/10.1542/peds.99.6.e10

Dionne JM, Abitbol CL, Flynn J. Hypertension in infancy: diagnosis, management and outcome. Pediatr Nephrol. 2012;27(1):17-32. https://doi.org/10.1007/s00467-010-1755-z

Flynn JT, Kaelber DC, Baker-Smith CM, et al. S on S and M of HBP in C. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017;140(3):e20171904. https://doi.org/10.1542/peds.2017-3035

Starr MC, Flynn J. Neonatal hypertension: cases, causes, and clinical approach. Pediatr Nephrol. 2019;34(5):787-99. https://doi.org/10.1007/s00467-018-3977-4

Rao AY, Devabathina N. Serum Creatinine Levels in First Week of Newborn Infant - Influence of Weight And Gestational Age: A Prospective Cohort Study. J Dent Med Sci. 2017;16(9):68-83.

Reddy KV, Pawale D, Shah M, Mouli D, Murki S. Assessment of Renal Growth and Function in Preterm Infants at Corrected Age of 12-18 Month. Indian Pediatr. 2020;57(5):411-4. https://doi.org/10.1007/s13312-020-1813-y

Schwartz GJ, Furth S. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol. 2007;22:1839-48. https://doi.org/10.1007/s00467-006-0358-1

Vieux R, Hascoet JM, Merdariu D, Fresson J, Gguillemin F. Glomerular filtration rate reference values in very preterm infants. Pediatrics. 2010;125(5):e1186-92. https://doi.org/10.1542/peds.2009-1426

Bökenkamp A. Proteinuria-take a closer look! Pediatr Nephrol. 2020;35:533-41. https://doi.org/10.1007/s00467-019-04454-w

Chaturvedi S, Ng KH, Mammen C. The path to chronic kidney disease following acute kidney injury: a neonatal perspective. Pediatr Nephrol. 2017;32:227-41. https://doi.org/10.1007/s00467-015-3298-9

Aisa MC, Cappuccini B, Barbati A, Orlacchio A, Baglioni M, Di Renzo G. Biochemical parameters of renal impairment/injury and surrogate markers of nephron number in intrauterine growth-restricted and preterm neonates at 30-40 days of posnatal corrected age. Pediatr Nephrol. 2016;31:2277-87. https://doi.org/10.1007/s00467-016-3484-4

Ponthier L, Trigolet M, Chianea T, Mons F, Yardin C, Guigonis V, et al. Distribution of proteinuria- and albuminuria-to-creatinine ratios in preterm newborns. Pediatr Nephrol. 2021;36(6):1515-24. https://doi.org/10.1007/s00467-020-04838-3

LF G. Medidas referenciales en ecografía pediátrica, aparato urinario y suprarrenales. Rev Hosp Niños BAires. 2011;53:243-8.

Rosenbaum DM, Korngold E, Teele R. Sonographic assessment of renal length in normal children. AJR Am J Roentgenol. 142(3):467-69. https://doi.org/10.2214/ajr.142.3.467

Abitbol CL, DeFreitas MJ, Strauss J. Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol. 2016;31(12):2213-22. https://doi.org/10.1007/s00467-016-3320-x

Scholbach T, Weitzel D. Body-surface-area related renal volume: a common normal range from birth to adulthood. Scientifica. 2012. https://doi.org/10.6064/2012/949164

Moreno-Villares JM, Collado MC, Larqué E, Leis-Trabazo MR, Sáenz-de-Pipaon M, Moreno A. Los primeros 1000 días: una oportunidad para reducir la carga de las enfermedades no transmisibles. Nutr Hosp. 2019;36(1):218-32. https://doi.org/10.20960/nh.02453

Berman I, Ortiz OE, Pineda LG, Richheimer R. Los primeros mil días de vida. Una mirada rápida. An Med Mex. 2016;61(4):313-8.

Organización Mundial de la Salud. Estrategia Mundial para la Salud de la Mujer, el Niño y el Adolescente (? 2016-2030). In: ?salud del adolescente: informe de la Secretaría (No EB140/34). Organización Mundial de la Salud; 2017.

Fundación Canguro. Actualización de los Lineamientos Técnicos para la Implementación de Programas Madre Canguro en Colombia, con énfasis en la nutrición del neonato prematuro o de bajo peso al nacer. Fundación Canguro; 2018.

Quiroga F. Protocolo de vigilancia en salud pública. Bajo peso al nacer a término. Instituto Nacional de Salud. Colombia; 2017.

WHO. Standards for improving quality of care for small and sick newborns in health facilities. WHO; 2020.

Kandasamy Y, Rudd D, Lumbers ER, Smith R. An evaluation of preterm kidney size and function over the first two years of life. Pediatr Nephrol. 2020;35(8):1477-82. https://doi.org/10.1007/s00467-020-04554-y

Iacobelli S, Guignard J. Maturation of glomerular filtration rate in neonates and infants: an overview. Pediatr Nephrol. 2020;36:1439-46. https://doi.org/10.1007/s00467-020-04632-1

Chopra S, Saha A. Preterm Birth: A Risk-factor for Chronic Kidney Disease? Indian Pediatr. 2020;57(5):395-6. https://doi.org/10.1007/s13312-020-1808-8

Carmody JB, Charlton J. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics. 2013;131(6):1168-79. https://doi.org/10.1542/peds.2013-0009

Brenner BM. The Impact of Kidney Development on the Life Course: A Consensus Document for Action. Nephron. 2017;136(1):3-49. https://doi.org/10.1159/000457967

Cavagnaro F. El riñón del niño prematuro: riesgos a largo plazo. Rev Chil Pediatr. 2020;91(3):324-9. https://doi.org/10.32641/rchped.v91i3.1607

Kandasamy Y, Rudd D, Smith R, Lumbers ER, Wright I. Extra uterine development of preterm kidneys. Pediatr Nephrol. 2018;33(6):1007-12. https://doi.org/10.1007/s00467-018-3899-1

Mistry K, Gupta C. Neonatal hypertension. NeoReviews. 2017;18(6):e357-71. https://doi.org/10.1542/neo.18-6-e357

Dionne JM, Bremner SA, Baygani SK, Batton B, Ergenekon E, Bhatt-Mehta V, et al. International Neonatal Consortium. Method of Blood Pressure Measurement in Neonates and Infants: A Systematic Review and Analysis. J Pediatr. 2020 jun;221:23-31.e5. https://doi.org/10.1016/j.jpeds.2020.02.072

Salgado CM, Jardim PC, Teles FB, Nunes MC. Low birth weight as a marker of changes in ambulatory blood pressure monitoring. Arq Bras Cardiol. 2009;92(2):107-21.

Fenton T, Kim J. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59. https://doi.org/10.1186/1471-2431-13-59

Segar J. Fluid and electrolyte management of high-risk infants. Nephrol Fluid/electrolyte Physiol. 2019:151-164. https://doi.org/10.1016/B978-0-323-53367-6.00010-8

Miall LS, Henderson M, Turner A, Brownlee L, Brocklebank T, Newell S, et al. Plasma creatinine rises dramatically in the first 48 hours of life in preterm infants. Pediatrics. 1999;104(6):e76. https://doi.org/10.1542/peds.104.6.e76

Khalsa DDK, Beydoun HA, Carmody JB. Prevalence of chronic kidney disease risk factors among low birth weight adolescents. Pediatr Nephrol. 2016;31(9):1509-1516. https://doi.org/10.1007/s00467-016-3384-7

MinSalud. Resolución 3280 de 2018. Sistema Único de Información Normativa. 2018. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-3280-de-2018.pdf

Bezerra, CTDM, Vaz Cunha, LC, Libório, A B. Defining reduced urine output in neonatal ICU: importance for mortality and acute kidney injury classification. Nephrology Dialysis Transplantation. 2013;28(4): 901-909. https://doi.org/10.1093/ndt/gfs604

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Dimensions


PlumX


Downloads

Download data is not yet available.