Consideraciones actuales de antimaláricos en la infección por SARS-COV-2 y su impacto

Palabras clave: COVID-19, SARS-Cov-2, Enfermedad Renal, Enfermedad Cardiovascular, Cloroquina, Antivirales, Coronavirus, Infecciones por Coronavirus (Fuente DeCS).

Resumen

Se torna evidente el compromiso del sistema respiratorio y digestivo en los pacientes infectados por el nuevo coronavirus emergente. No obstante, también puede existir compromiso de otros sistemas importantes, como lo es el sistema renal. Se hace imprescindible que el clínico no olvide que los pacientes renales muchas veces concomitan con enfermedades cardiovasculares, ya que en ambas patologías se torna sombrío el pronóstico de la enfermedad infecto-contagiosa causada por el nuevo coronavirus. Aún no existen fármacos efectivos y aprobados para enfrentar este virus. Hoy día se presume el posible efecto benéfico de los antipalúdicos (hidroxicloroquina y cloroquina) en el tratamiento de pacientes infectados por el virus. Se espera que a través de las propiedades antivirales que exhiben estos fármacos, se mejore el pronóstico y la mortalidad asociada a esta enfermedad. Para ello se adelantan un número considerable de ensayos que escudriñan y discuten su utilidad en la patología de interés actual.

 

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. Calvo C, García M, de Carlos J, Vázquez J, et al. Recomendaciones sobre el manejo clínico de la infección por el «nuevo coronavirus» SARS-CoV2. Grupo de trabajo de la Asociación Española de Pediatría (AEP). An Pediatr (Barc); 2020. DOI: https://doi.org/10.1016/j.anpedi.2020.02.001
2. de Francismo ALM, Canga, P. Coronavirus y Riñón. Nefrología al día [Internet]. 24 de Marzo de 2020. Available at: https://www.nefrologiaaldia.org/es-articulo-coronavirus-rinon-287
3. Trilla, A. One world, one health: The novel coronavirus COVID-19 epidemic. Medicina Clinica. 2020; 154(5), 175–177. DOI: https://doi.org/10.1016/j.medcli.2020.02.002
4. WHO. WHO Director-General's opening remarks at the media briefing on COVID-19 .11 March 2020. Available at: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
5. World do meter [Internet]. Coronavirus Updates. [Access: 30 March 2020]. Available at: https://www.worldometers.info/coronavirus/
6. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020; 6736(20), 1–10. DOI: https://doi.org/10.1016/S0140-6736(20)30251-8
7. Clerkin K, Fried J, Raikhelkar J, Sayer G, Griffin J, Masoumi A, et al. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease. CIRCULATIONAHA.120.046941. 2020; DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.046941
8. Gallego A, Remolina S, Mendez I, Pérez O. A propósito del Coronavirus- COVID 19 ¿Qué pasa con el sistema cardiovascular? Sociedad colombiana cardiología y cirugía cardiovascular. PUESTA AL DÍA EN CARDIOLOGÍA. 13 de Marzo de 2020. Boletín 139. Available at: https://scc.org.co/boletin-no-139/
9. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. Published online February 24, 2020. DOI: https://doi.org/10.1001/jama.2020.2648
10. Gautret P, Lagier J, Parola P, Hoang V, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, International Journal of Antimicrobial Agents; 2020. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105949
11. Colson P, Rolain J, Raoult D. Chloroquine for the 2019 novel coronavirus. International Journal of Antimicrobial Agents; 2020. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105923
12. Colson P, Rolain J, Lagier J, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, International Journal of Antimicrobial Agents; 2020. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105932
13. Cortegiani A, Ingoglia D, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19, Journal of Critical Care; 2020. DOI: https://doi.org/10.1016/j.jcrc.2020.03.005
14. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 4 March 2020 DOI: https://doi.org/10.1002/ddr.21656
15. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; DOI: https://doi.org/10.1016/s0140-6736(20)30183-5
16. Li Z, Wu M, Yao J, Guo J, Liao X, Song S, et al. Caution on Kidney Dysfunctions of 2019-nCoV Patients medRxiv; 2020. DOI: https://doi.org/10.1101/2020.02.18.20023242
17.Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney impairment is associated with in-hospital death of COVID-19 patients. MedRxiv; 2020. DOI: https://doi.org/10.1101/2020.02.18.20023242
18. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Biorxiv 2020. DOI: https://doi.org/10.1101/2020.01.31.929042
19. Deng Y, Zheng Y, Cai G, Chen X, Hong Q. Single-cell RNA sequencing data suggest a role for angiotensinconverting enzyme 2 in kidney impairment in patients infected with 2019-nCoV. Chinese Medical Journal; 2020. DOI: https://doi.org/10.1097/CM9.0000000000000783
20. Medina F. Precisions on the history of quinine. Reumatol Clin. 2007; 3(4) :194-6. Available at: https://www.reumatologiaclinica.org/es-pdf-S2173574307702460
21. Kouznetsov V, Amado D. Antimaláricos: construcción de híbridos moleculares de la cloroquina. Univ. Sci. 2008; 13 (3), 306-320. Available at: https://revistas.javeriana.edu.co/index.php/scientarium/article/view/1442
22. Amurrio D. La quinina. Historia y Síntesis. Acta Nova. 2001; 1(3): 241-247 Available at: http://ucbconocimiento.ucbcba.edu.bo/index.php/RAN/article/view/171/140
23. Devaux C, Rolain J, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. International Journal of Antimicrobial Agents; 2020. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105938
24. Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines Against Coronavirus Disease 2019 (COVID-19): Chloroquine or Hydroxychloroquine. International Journal of Antimicrobial Agents; 2020. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105945
25. Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother; 2020. DOI: https://doi.org/10.1093/jac/dkaa114
26. Touret, F., & de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Research. 2020; 177 104762. DOI: https://doi.org/10.1016/j.antiviral.2020.104762
27. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases; 2020. DOI: https://doi.org/10.1093/cid/ciaa237
28. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery. 2020; 6(1), 16. DOI: https://doi.org/10.1038/s41421-020-0156-0
29. Hu T, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nature Nanotechnology. 2020; 19–21. DOI: https://doi.org/10.1038/s41565-020-0674-9
30. Danza Á, Graña D, Goñi M, Vargas A, Ruiz G. (2016). Hydroxychloroquine for autoimmune diseases. Rev Med Chile; 144(2), 232–240. DOI: https://doi.org/10.4067/S0034-98872016000200012
31. Bohórquez J, Rivera M, Rivera S, Alvear S, Lavalle C. Leptina y su participación en la Enfermedad Arterial Coronaria. Archivos de Medicina. 2020; 16 (1), 1-3. DOI: https://doi.org/10.3823/1423
32. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research. 2020; 30(3), 269–271. DOI: https://doi.org/10.1038/s41422-020-0282-0
33. Fiehn C, Ness T, Weseloh C, Specker C, Hadjiski D, Detert J, Krüger K. Sicherheitsmanagement der Therapie mit Antimalariamitteln in der Rheumatologie. Interdisziplinäre Empfehlungen auf der Basis einer systematischen Literaturrecherche. zeitschrift für Rheumatologie; 2020. DOI: https://doi.org/10.1007/s00393-020-00751-0
34. Aletaha D, Kapral T, Smolen JS. Toxicityprofiles of traditional disease modifying antirheumatic drugs for rheumatoid arthritis. Ann Rheum Dis. 2003; 62 (5): 482–486. DOI: https://doi.org/10.1136/ard.62.5.482
35. Wolfe F, Marmor MF. Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2010; 62 (6):775–84. DOI: https://doi.org/10.1002/acr.20133
36. Izmirly PM, Costedoat-Chalumeau N, Pisoni CN, Khamashta MA, Kim MY, Saxena A, et al. Maternal use of hydroxychloroquine is associated with a reduced risk of recurrent anti-SSA/ Ro-antibody-associated cardiac manifestations of neonatal lupus. Circulation. 2012; 126(1):76-82. DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.089268
37. Freedman A. Annals of the Rheumatic Diseases. 1956; 15 (3) 251257; DOI: https://doi.org/10.1136/ard.15.3.251
38. Centers for Disease Control and Prevention (CDC). Guidelines for treatment of malaria in the United States. Updated April 2019. Available at: https://www.cdc.gov/malaria/resources/pdf/clinicalguidance.pdf
39. WHO. World Health Organization. Guidelines for the Treatment of Malaria. 3rd ed. Geneva, Switzerland: World Health Organization. April 2015. Available at: https://www.who.int/malaria/publications/atoz/9789241549127/en/
40. Smolen JS, Landewé R, Breedveld FC, Buch M, Burmester G, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis. 2014;73(3):492-509.DOI: https://doi.org/10.1136/annrheumdis-2013-204573
41. Tsang-A-Sjoe MW, Bultink IE. Systemic lupus erythematosus: review of synthetic drugs. Expert Opin Pharmacother. 2015;16(18):2793-2806. DOI: https://doi.org/10.1517/14656566.2015.1101448
42. Kruize AA, Hené RJ, Kallenberg CG, van Bijsterveld OP, van der Heide A, Kater L, et al. Hydroxychloroquine treatment for primary Sjögren's syndrome: a two year double blind crossover trial. Ann Rheum Dis. 1993;52(5):360-364. DOI: https://doi.org/10.1136/ard.52.5.360
43. Carsons SE, Vivino FB, Parke A, Carteron, N, Sanka V, Brasington R, et al. Treatment guidelines for rheumatologic manifestations of Sjögren's syndrome: use of biologic agents, management of fatigue, and inflammatory musculoskeletal pain. Arthritis Care Res (Hoboken). 2017; 69(4):517-527. DOI: https://doi.org/10.1002/acr.22968
44. Miller ML. Initial treatment of dermatomyositis and polymyositis in adults. In: Curtis MR, Ofori AO, (Eds): UpToDate, Post TW (Ed), UpToDate, Waltham, MA. July 2019. Available at: https://www.uptodate.com/contents/initial-treatment-of-dermatomyositis-and-polymyositis-in-adults
45. Delogu I, de Lamballerie X. Chikungunya disease and chloroquine treatment. Journal of Medical Virology. 2011; 83(6), 1058–1059. DOI: https://doi.org/10.1002/jmv.22019
46. Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S, et al. (Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. The Lancet Infectious Diseases. 2011; 11(9), 677–683. DOI: https://doi.org/10.1016/s1473-3099(11)70065-2
47. Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Neglected Trop. Dis. 2010; 4 (8), e785. DOI: https://doi.org/10.1371/journal.pntd.0000785
48. Mackenzie, A. H. Dose refinements in long-term therapy of rheumatoid arthritis with antimalarials. The American Journal of Medicine. 1983; 75(1), 40-45. DOI: https://doi.org/10.1016/0002-9343(83)91269-x
49. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Medicine; 2020. DOI: https://doi.org/10.1007/s00134-020-06022-5
50. Consenso colombiano de atención, diagnóstico y manejo de la infección por SARS-COV-2/COVID-19 en establecimientos de atención de la salud - Recomendaciones basadas en consenso de expertos e informadas en la evidencia. Infectio. Marzo de 2020; 24(3):1-102. DOI: https://doi.org/10.22354/in.v24i3.851
Publicado
2020-04-23
Cómo citar
1.
Abuabara-Franco E, Bohórquez-Rivero J, Restom-Arrieta J, Sáenz-López J, Correa-Guerrero J, Mendoza-Paternina C. Consideraciones actuales de antimaláricos en la infección por SARS-COV-2 y su impacto. Rev. Colomb. Nefrol. [Internet]. 23 de abril de 2020 [citado 4 de junio de 2020];7(Supl 2). Disponible en: https://revistanefrologia.org/index.php/rcn/article/view/406
Sección
Artículo de revisión