Renal countercurrent multiplication mechanism: A challenge from the learning to clinical practice
PDF (Español)

Keywords

Renal physiology
Urine concentration
Renal tubular function
Countercurrent
Medical teaching
Antidiuretic hormone
Loop of Henle
Urea

How to Cite

1.
Jaurretche S, Brajkovic ML, del Rosal MV, Venera G. Renal countercurrent multiplication mechanism: A challenge from the learning to clinical practice. Rev. Colomb. Nefrol. [Internet]. 2025 Aug. 8 [cited 2025 Oct. 4];12(2). Available from: https://revistanefrologia.org/index.php/rcn/article/view/884

Abstract

Background: The renal countercurrent multiplication mechanism (CCMM) of the loop of Henle is essential for urine concentration and dilution, yet remains challenging in renal physiology education and clinical practice. Uncertainties persist regarding inner medullary and papillary hyperosmolarity.

Purpose: To comprehensively review the physiology, historical foundations, and current models of the CCMM, highlighting recent findings that complement classical concepts.

Methodology: Narrative review based on searches in PubMed, Medline, Scopus, SciELO, Latindex, and Google Scholar, including historical and contemporary literature on tubular physiology and countercurrent mechanisms.

Results: The review traces the conceptual evolution from vitalist and mechanistic theories to Wirz’s classical model, and its refinement with Kokko and Rector’s passive theory. Segmental properties, vasa recta function, urea recirculation, and the integration of exchange and multiplication mechanisms are described. Recent findings include the differential role of urea transporters (UT-A1, UT-A3), aquaporins (AQP1), and chloride channels (ClC-K1), as well as the three-dimensional organization of nephrons and vasa recta, suggesting microdomains for solute exchange.

Conclusions: The CCMM is a dynamic, multifactorial process requiring integration of functional anatomy, solute transport, and hormonal regulation. Recent discoveries expand and refine the classical model, with implications for comparative physiology and medical education.

https://doi.org/10.22265/acnef.12.2.884
PDF (Español)

References

- Koulouridis E, Koulouridis I. The loop of henle as the milestone of mammalian kidney concentrating ability: a historical review. Acta Med Hist Adriat. 2014;12(2):413-28.

- Richards AN. Physiology of the kidney. Bull NY Acad Med. 1938;14(1):5-20.

- Smith HW, Goldring W, Chasis H. The measurement of the tubular excretory mass, effective blood flow and filtration rate in the normal human kidney. J Clin Invest. 1938;17(3):263-78. https://doi.org/10.1172/jci100950

- Davis JM, Thurau K, Haberle D. Carl Ludwig: the discoverer of glomerular filtration. Nephrol Dial Transplant. 1996;11(4):717-20. https://doi.org/10.1093/oxfordjournals.ndt.a027371

- Morel F. The loop of Henle, a turning-point in the history of kidney physiology. Nephrol Dial Transplant. 1999;14(10):2510-5. https://doi.org/10.1093/ndt/14.10.2510

- Peña Rodríguez JC. La sabiduría del riñón II. La concentración de la orina y el mecanismo multiplicador por contracorriente del asa de Henle. Acta Méd Grupo Ángeles. 2021;19(2):304-12. https://doi.org/10.35366/100465

- Smith HW. The fate of sodium and water in the renal tubules. Bull N Y Acad Med. 1959 May;35(5):293-316. https://pubmed.ncbi.nlm.nih.gov/13638763/

- Navar LG. The legacy of Homer W. Smith: mechanistic insights into renal physiology. J Clin Invest. 2004;114(8):1048-50. https://doi.org/10.1172/jci23150

- Richards AN, Plant OH. Urine formation in the perfused kidney: the influence of alterations in renal blood pressure on the amount and composition of urine. Am J Physiol-Legacy Content. 1922;59(1):144-83. https://doi.org/10.1152/ajplegacy.1922.59.1.144

- Gottschalk CW. History of the urinary concentrating mechanism. Kidney Int. 1987;31(2):507-11.

- Heinz V. Carl W Gottschalk’s contribution to elucidating the urinary concentrating mechanisma. J Am Soc Nephrol. 1999;10(3):620-7. https://doi.org/10.1681/ASN.V103620

- Wirz H. Countercurrent principle. Protoplasma. 1967;36:322-7. http://doi.org/10.1007/BF01248053

- Koeppen BM, Stanton BA. Berne y Levy, Fisiología. 7.a ed. Elsevier Health Sciences; 2018.

- Houssay BA, Lewis JT, Orías O, Braun Menéndez E, Hug E, Foglia VG, et al. Fisiología humana. Argentina: Librería El Ateneo; 2021.

- Hall JE, editor. Guyton & Hall. Tratado de fisiología médica. 12.a ed. Elsevier Health Sciences; 2021.

- Barrett KE, Barman SM, Brooks HL, Yuan JXJ. Ganong, fisiología médica. México: McGraw Hill; 2013.

- Jamison R, Bennett CM, Berliner RW. Countercurrent multiplication by the thin loops of Henle. Am J Physiol. 1967;212(2):357-66. https://doi.org/10.1152/ajplegacy.1967.212.2.357

- Kokko JP, Rector FC. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 1972;2(4):214-23. https://doi.org/10.1038/ki.1972.97

- Stephenson JL. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 1972;2(2):85-94. https://doi.org/10.1038/ki.1972.75

- Dantzler WH, Layton AT, Layton HE, Pannabecker TL. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clin J Am Soc Nephrol. 2014;9(10):1781-9. https://doi.org/10.2215/cjn.08750812

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.