Consensus of the Colombian Association of Nephrology and Arterial Hypertension (ASOCOLNEF) and the Colombian Association of Radiology (ACR) on evidence-based recommendations about Contrast-Associated Acute Kidney Injury (CA-AKI)
PDF (Español)

Keywords

Acute kidney injury
Contrast media
glomerular filtration rate
Consensus

How to Cite

1.
Aguirre Caicedo M, Cruz Vásquez LA, Restrepo Valencia C, Ariza A, Oyuela Mancera ME, Martínez Mera T, Pérez-Hidalgo JM, Abad Díaz P, Baquero R, Chacón JA, Bermon Angarita A. Consensus of the Colombian Association of Nephrology and Arterial Hypertension (ASOCOLNEF) and the Colombian Association of Radiology (ACR) on evidence-based recommendations about Contrast-Associated Acute Kidney Injury (CA-AKI). Rev. Colomb. Nefrol. [Internet]. 2023 Jul. 26 [cited 2024 Apr. 27];10(2). Available from: https://revistanefrologia.org/index.php/rcn/article/view/702

Abstract

Background: Contrast-Associated Acute Kidney Injury (CA-AKI) is an iatrogenic disorder with potential implications for morbidity and mortality, a matter of concern in medical imaging services. In recent years, significant changes have been made in our understanding of this condition, from a more precise definition, real incidence, risk factors, and predictive scales, to the actual impact of certain prevention strategies.

Purpose: To generate evidence-based recommendations about the use of iodinated contrast media in patients undergoing diagnostic and/or therapeutic radiological procedures, through expert consensus.

Methodology: Based on the formulation of research questions related to Contrast-Associated Acute Kidney Injury, evidence was searched in Pubmed, Embase, and Scopus from January 2013 to August 2022. Articles were selected through a systematic review and a modified Delphi consensus methodology. The documents were assessed using instruments that evaluate quality of their evidence.

Results: A total of 22 recommendations were formulated for the management of patients requiring administration of iodinated contrast media. An expert panel consisting of 11 members, including 4 nephrologists, 4 radiologists, 1 pediatric nephrologist, and 2 epidemiologists, actively participated in the consensus development. The process involved 5 virtual sessions and 15 hours of work. Conclusions: The term "Contrast-Associated Acute Kidney Injury" (CA-AKI) should ideally be used and other definitions implying a clear causality should be abandoned. Regarding its incidence, recent data show that it has been overestimated in the literature and perceived exaggeratedly by healthcare personnel. Similarly, only a low estimated glomerular filtration rate (eGFR) is considered an independent risk factor for the development of CA-AKI. Finally, in terms of prevention, hydration alone has shown potential benefits as a nephroprotective measure.

https://doi.org/10.22265/acnef.10.2.702
PDF (Español)

References

- Rodrigues CE, Endre ZH. Definitions, phenotypes, and subphenotypes in acute kidney injury-Moving towards precision medicine. Nephrology. 2023 febr.;28(2):83-96. https://doi.org/10.1111/nep.14132

- Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393-9. https://doi.org/10.1016/j.jacc.2004.06.068

- Stacul F, van der Molen A, Reimer P, Webb J, Thomsen H, Morcos S, et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol. 2011;21(12):2527-41. https://doi.org/10.1007/s00330-011-2225-0

- Slocum NK, Grossman M, Moscucci M, Smith D, Aronow H, Dixon S, et al. The changing definition of contrast-induced nephropathy and its clinical implications: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). Am Heart J. 2012;163(5):829-34. https://doi.org/10.1016/j.ahj.2012.02.011

- Lameire NH, Levin A, Kellum J, Cheung M, Jadoul M, Winkelmayer W, et al. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021;100(3):516-26. https://doi.org/10.1016/j.kint.2021.06.028

- Azzalini L, Spagnoli V, Ly H. Contrast-Induced Nephropathy: From Pathophysiology to Preventive Strategies. Can J Cardiol. 2016;32(2):247-55. https://doi.org/10.1016/j.cjca.2015.05.013

- Macdonald DB, Hurrell CD, Costa AF, McInnes MD, O’Malley M, Barrett B, et al. Canadian Association of Radiologists Guidance on Contrast-Associated Acute Kidney Injury. Can J Kidney Health Dis. 2022;9:20543581221097456. https://doi.org/10.1177/20543581221097455

- Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT. Hospital-acquired renal insufficiency: a prospective study. Am J Med. 1983;74(2):243-8. https://doi.org/10.1016/0002-9343(83)90618-6

- McDonald RJ, McDonald J, Bida J, Carter R, Fleming C, Misra S, et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology. 2013;267(1):106-18. https://doi.org/10.1148/radiol.12121823

- Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol. 2008;191(2):376-82. doi: https://doi.org/10.2214/AJR.07.3280

- Bruce RJ, Djamali A, Shinki K, Michel SJ, Fine JP, Pozniak MA. Background fluctuation of kidney function versus contrast-induced nephrotoxicity. AJR Am J Roentgenol. 2009;192(3):711-8. https://doi.org/10.2214/AJR.08.1413

- Rao QA, Newhouse JH. Risk of nephropathy after intravenous administration of contrast material: a critical literature analysis. Radiology. 2006;239(2):392-7. https://doi.org/10.1148/radiol.2392050413

- Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the Risk of Radiocontrast-Associated Nephropathy. J Am Soc Nephrol. 2017;28(2):653-9. https://doi.org/10.1681/ASN.2016010021

- Cramer BC, Parfrey PS, Hutchinson T, Baran D, Melanson D, Ethier R, et al. Renal function following infusion of radiologic contrast material. A prospective controlled study. Arch Intern Med. 1985;145(1):87-9. https://doi.org/10.1001/archinte.145.1.87

- Heller CA, Knapp J, Halliday J, O’Connell D, Heller RF. Failure to demonstrate contrast nephrotoxicity. Med J Aust. 1991;155(5):329-32. https://doi.org/10.5694/j.1326-5377.1991.tb142293.x

- Patorno E, Grotta A, Bellocco R, Schneeweiss S. Propensity score methodology for confounding control in health care utilization databases. Epidemiology, Biostatistics and Public Health. 2013;10(3):e8940-16. https://doi.org/10.2427/8940

- Davenport MS, Khalatbari S, Cohan RH, Dillman JR, Myles JD, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology. 2013;268(3):719-28. https://doi.org/10.1148/radiol.13122276

- Goulden R, Rowe BH, Abrahamowicz M, Strumpf E, Tamblyn R. Association of Intravenous Radiocontrast With Kidney Function: A Regression Discontinuity Analysis. JAMA Intern Med. 2021 jun. 1:767-774. https://doi.org/10.1001/jamainternmed.2021.0916

- Davenport MS, Perazella M, Yee J, Dillman J, Fine D, McDonald R, et al. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Radiology. 2020;294(3):660-8. https://doi.org/10.1148/radiol.2019192094

- Davenport MS, Perazella MA, Yee J, Dillman J, Fine D, McDonald R, et al., Use of Intravenous Iodinated Contrast Media in Patients With Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020;2(1):85-93. https://doi.org/10.1016/j.xkme.2020.01.001

- Ehmann MR, Mitchell J, Levin S, Smith A, Menez S, Hinson J, et al. Renal outcomes following intravenous contrast administration in patients with acute kidney injury: a multi-site retrospective propensity-adjusted analysis. Intensive Care Med. 2023;49:205-15. https://doi.org/10.1007/s00134-022-06966-w

- International Society of Nephrology. Kidney International supplements. Off J Int Soc Nephrol. 2013;3(1):163. https://doi.org/10.1038/kisup.2012.74

- Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function--measured and estimated glomerular filtration rate. N Engl J Med. 2006 jun. 8; 354(23):2473-83. doi: https://doi.org/10.1056/NEJMra054415

- Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41. https://doi.org/10.1159/000180580

- Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D, A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461-70. https://doi.org/10.7326/0003-4819-130-6-199903160-00002

- Levey A, Greene T, Kusek JW, Beck G. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 2000;11:155A.

- Zuo L, Ma YC, Zhou YH, Wang M, Xu GB, Wang HY. Application of GFR-estimating equations in Chinese patients with chronic kidney disease. Am J Kidney Dis. 2005;45(3):463-72. https://doi.org/10.1053/j.ajkd.2004.11.012

- Levey AS, Stevens LA, Schmid C, Zhang Y, Castro A, Feldman H, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

- Delgado C, Baweja M, Crews D, Eneanya N, Gadegbeku C, Inker L, et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis. 2022;79(2):268-88. https://doi.org/10.1053/j.ajkd.2021.08.003

- Filler G, Bökenkamp A, Hofmann W, Le Bricon T, Martínez-Brú C, Grubb A. Cystatin C as a marker of GFR--history, indications, and future research. Clin Biochem. 2005 en.;38(1):1-8. https://doi.org/10.1016/j.clinbiochem.2004.09.025

- Grubb A, Horio M, Hansson LO, Björk J, Nyman U, Flodin M, et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem. 2014 jul.;60(7):974-86. https://doi.org/10.1373/clinchem.2013.220707

- Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012 jul. 5;367(1):20-9. https://doi.org/10.1056/NEJMoa1114248

- Pottel H, Delanaye P, Schaeffner E, Dubourg L, Eriksen BO, Melsom T, et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant. 2017 mzo. 1;32(3):497-507. https://doi.org/10.1093/ndt/gfw425

- Porrini E, Ruggenenti P, Luis-Lima S, Carrara F, Jiménez A, de Vries APJ, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019 mzo.;15(3):177-90. https://doi.org/10.1038/s41581-018-0080-9

- Steiner RW. You can't get there from here: Critical obstacles to current estimates of the ESRD risks of young living kidney donors. Am J Transplant. 2019 en.;19(1):32-6. https://doi.org/10.1111/ajt.15089

- Soveri I, Berg UB, Björk J, Elinder CG, Grubb A, Mejare I, et al. Measuring GFR: a systematic review. Am J Kidney Dis. 2014 sept.;64(3):411-24. https://doi.org/10.1053/j.ajkd.2014.04.010

- Warwick J, Holness J. Measurement of Glomerular Filtration Rate. Semin Nucl Med. 2022 jul.;52(4):453-66. https://doi.org/10.1053/j.semnuclmed.2021.12.005

- Delanaye P, Ebert N, Melsom T, Gaspari F, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: How to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016 oct.;9(5):682-99. https://doi.org/10.1093/ckj/sfw070

- Gaspari F, Thakar S, Carrara F, Perna A, Trillini M, Aparicio MC, et al. Safety of Iohexol Administration to Measure Glomerular Filtration Rate in Different Patient Populations: A 25-Year Experience. Nephron. 2018;140(1):1-8. https://doi.org/10.1159/000489898

- McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology. 2014;271(1):65-73. https://doi.org/10.1148/radiol.13130775

- Ellis JH, Khalatbari S, Yosef M, Cohan RH, Davenport MS. Influence of Clinical Factors on Risk of Contrast-Induced Nephrotoxicity From IV Iodinated Low-Osmolality Contrast Material in Patients With a Low Estimated Glomerular Filtration Rate. AJR Am J Roentgenol. 2019;213(5):W188-93. https://doi.org/10.2214/AJR.19.21424

- Moore RD, Steinberg EP, Powe NR, Brinker JA, Fishman EK, Graziano S, et al. Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial. Radiology. 1992;182(3):649-55. https://doi.org/10.1148/radiology.182.3.1535876

- Pannu N, Wiebe N, Tonelli M, Alberta Kidney Disease Network. Prophylaxis strategies for contrast-induced nephropathy. JAMA. 2006;295(23):2765-79. https://doi.org/10.1001/jama.295.23.2765

- Lautin EM, Freeman NJ, Schoenfeld AH, Bakai CW, Haramati N, Friedman AC, et al. Radiocontrast-associated renal dysfunction: a comparison of lower-osmolality and conventional high-osmolality contrast media. AJR Am J Roentgenol. 1991;157(1):59-65. https://doi.org/10.2214/ajr.157.1.2048540

- Eng J, Wilson R, Subramaniam R, Zhang A, Suarez-Cuervo C, Turban S, et al. Comparative Effect of Contrast Media Type on the Incidence of Contrast-Induced Nephropathy: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164(6):417-24. https://doi.org/10.7326/M15-1402

- Seeliger E, Lenhard DC, Persson PB. Contrast media viscosity versus osmolality in kidney injury: lessons from animal studies. Biomed Res Int. 2014:358136. https://doi.org/10.1155/2014/358136

- Seeliger E, Flemming B, Wronski T, Ladwig M, Arakelyan K, Godes M, et al. Viscosity of contrast media perturbs renal hemodynamics. J Am Soc Nephrol. 2007;18(11):2912-20. https://doi.org/10.1681/ASN.2006111216

- van der Molen AJ, Reimer P, Dekkers I, Bongartz G, Bellin MF, Bertolotto M, et al. Post-contrast acute kidney injury - Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2018;28(7):2845-55. https://doi.org/10.1007/s00330-017-5246-5

- Nyman U, Almén T, Jacobsson B, Aspelin P. Are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol. 2012;22(6):1366-71. https://doi.org/10.1007/s00330-011-2371-4

- Jurado-Román A, Hernández-Hernández F, García-Tejada J, Granda-Nistal C, Molina J, Velázquez M, et al. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Am J Cardiol. 2015;115(9):1174-8. https://doi.org/10.1016/j.amjcard.2015.02.004

- McDonald RJ, McDonald J, Carter R, Hartman R, Katzberg R, Kallmes D, et al. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology. 2014;273(3):714-25. https://doi.org/10.1148/radiol.14132418

- Valgimigli M, Gagnor A, Calabró P, Frigoli E, Leonardi S, Zaro T, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015 jun. 20;385(9986):2465-76. https://doi.org/10.1016/S0140-6736(15)60292-6

- Andò G, Costa F, Trio O, Oreto G, Valgimigli M. Impact of vascular access on acute kidney injury after percutaneous coronary intervention. Cardiovasc Revasc Med. 2016;17(5):333-8. https://doi.org/10.1016/j.carrev.2016.03.004

- Taliercio CP, Vlietstra RE, Fisher LD, Burnett JC. Risks for renal dysfunction with cardiac angiography. Ann Intern Med. 1986;104(4):501-4. https://doi.org/10.7326/0003-4819-104-4-501

- Malik P. Grossman’s Cardiac Catheterization, Angiography, and Intervention. Can J Cardiol. 2007 my. 15;23(7):602.

- Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med. 1990 nov.;89(5):615-20. https://doi.org/10.1016/0002-9343(90)90180-l

- Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy. AJR Am J Roentgenol. 2004 dic.;183(6):1673-89. https://doi.org/10.2214/ajr.183.6.01831673

- Marenzi G, Assanelli E, Campodonico J, Lauri G, Marana I, De Metrio M, et al. Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med. 2009;150(3):170-7. https://doi.org/10.7326/0003-4819-150-3-200902030-00006

- Lee HC, Chuang KI, Lu CF, Chiang Y, Wang HJ, Hsieh KL. Use of Contrast Medium Volume to Guide Prophylactic Hydration to Prevent Acute Kidney Injury After Contrast Administration: A Meta-Analysis. AJR Am J Roentgenol. 2020 jul.;215(1):15-24. https://doi.org/10.2214/AJR.19.22325

- Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989 jun.;86(6 Pt 1):649-52. https://doi.org/10.1016/0002-9343(89)90437-3

- Hattar L, Assaker JP, Aoun J, Price LL, Carrozza J, Jaber BL. Revising the Maximal Contrast Dose for Predicting Acute Kidney Injury following Coronary Intervention. Am J Nephrol. 2021;52(4):328-35. https://doi.org/10.1159/000515382

- Kane GC, Doyle BJ, Lerman A, Barsness GW, Best PJ, Rihal CS. Ultra-low contrast volumes reduce rates of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. J Am Coll Cardiol. 2008 en. 1;51(1):89-90. https://doi.org/10.1016/j.jacc.2007.09.019

- Gurm HS, Dixon SR, Smith DE, Share D, Lalonde T, Greenbaum A, et al. Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2011 ag. 23;58(9):907-14. https://doi.org/10.1016/j.jacc.2011.05.023

- Kalra N, Fenster P. Is renal function-based contrast dosing of radiographic contrast media in patients undergoing percutaneous coronary intervention sufficient to delineate safe limits of contrast dose? J Am Coll Cardiol. 2012 en. 24;59(4):432. https://doi.org/10.1016/j.jacc.2011.09.060

- Gurm HS, Mavromatis K, Bertolet B, Kereiakes DJ, Amin AP, Shah AP, et al. Minimizing radiographic contrast administration during coronary angiography using a novel contrast reduction system: A multicenter observational study of the DyeVert™ plus contrast reduction system. Catheter Cardiovasc Interv. 2019 jun. 1;93(7):1228-35. https://doi.org/10.1002/ccd.27935

- Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N Engl J Med. 2018;378(7):603-14. https://doi.org/10.1056/NEJMoa1710933

- Amin AP, Bach RG, Caruso ML, Kennedy KF, Spertus JA. Association of Variation in Contrast Volume With Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention. JAMA Cardiol. 2017 sept. 1;2(9):1007-2. https://doi.org/10.1001/jamacardio.2017.2156

- Gurm HS, Seth M, Dixon S, Kraft P, Jensen A. Trends in Contrast Volume Use and Incidence of Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention: Insights From Blue Cross Blue Shield of Michigan Cardiovascular Collaborative (BMC2). JACC Cardiovasc Interv. 2018 mzo. 12;11(5):509-11. https://doi.org/10.1016/j.jcin.2017.10.018

- Aoun J, Nicolas D, Brown JR, Jaber BL. Maximum allowable contrast dose and prevention of acute kidney injury following cardiovascular procedures. Curr Opin Nephrol Hypertens. 2018 mzo.;27(2):121-9. https://doi.org/10.1097/MNH.0000000000000389

- Bartholomew BA, Harjai K, Dukkipati S, Boura J, Yerkey M, Glazier S, et al. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol. 2004;93(12):1515-19. https://doi.org/10.1016/j.amjcard.2004.03.008

- Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol. 2013;61(22):2242-8. https://doi.org/10.1016/j.jacc.2013.03.026

- Gao Y, Li D, Cheng H, Chen Y. Derivation and validation of a risk score for contrast-induced nephropathy after cardiac catheterization in Chinese patients. Clin Exp Nephrol. 2014;18(6):892-8. https://doi.org/10.1007/s10157-014-0942-9

- Tziakas D, Chalikias G, Stakos D, Altun A, Sivri N, Yetkin E, et al. Validation of a new risk score to predict contrast-induced nephropathy after percutaneous coronary intervention. Am J Cardiol. 2014;113(9):1487-93. https://doi.org/10.1016/j.amjcard.2014.02.004

- Lin KY, Zheng W, Bei W, Chen S, Shariful S, Liu Y, et al. A novel risk score model for prediction of contrast-induced nephropathy after emergent percutaneous coronary intervention. Int J Cardiol. 2017;230:402-12. https://doi.org/10.1016/j.ijcard.2016.12.095

- Pasquel FJ, Hinedi Z, Umpierrez G, Klein R, Adigweme A, Coralli R, et al. Metformin-associated lactic acidosis. Am J Med Sci. 2015;349(3):263-7. https://doi.org/10.1097/MAJ.0b013e3182a562b7

- Boada Fernández Del Campo C, Rodríguez C, García MM, Aldea AM, Sanz EJ, Fernández E, et al. Metformin-associated hyperlactacidaemia acidosis: Diagnosis rate in standard clinical practice and its relationship with renal failure. Rev Clin Esp. 2019;219(5):236-42. https://doi.org/10.1016/j.rce.2018.11.006

- Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;4: CD002967. https://doi.org/10.1002/14651858.CD002967.pub4

- Richy FF, Sabidó-Espin M, Guedes S, Corvino FA, Gottwald-Hostalek U. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study. Diabetes Care. 2014;37(8):2291-5. https://doi.org/10.2337/dc14-0464

- Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312(24):2668-75. https://doi.org/10.1001/jama.2014.15298

- Lu WR, Defilippi D, Braun A. Unleash metformin: reconsideration of the contraindication in patients with renal impairment. Ann Pharmacother. 2013;47(11):1488-97. https://doi.org/10.1177/1060028013505428

- Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073-81. https://doi.org/10.1016/S0140-6736(10)60674-5

- Bhandari S, Ives N, Brettell E, Valente M, Cockwell P, Topham P, et al. Multicentre randomized controlled trial of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker withdrawal in advanced renal disease: the STOP-ACEi trial. Nephrol Dial Transplant. 2016;31(2):255-61. https://doi.org/10.1093/ndt/gfv346

- Qiao Y, Shin J, Chen T, Inker L, Coresh J, Alexander C, et al. Association Between Renin-Angiotensin System Blockade Discontinuation and All-Cause Mortality Among Persons With Low Estimated Glomerular Filtration Rate. JAMA Intern Med. 2020;180(5):718-26. https://doi.org/10.1001/jamainternmed.2020.0193

- Walther CP, Winkelmayer WC, Richardson PA, Virani SS, Navaneethan SD. Renin-angiotensin system blocker discontinuation and adverse outcomes in chronic kidney disease. Nephrol Dial Transplant. 2021;36(10):1893-9. https://doi.org/10.1093/ndt/gfaa300

- Fu EL, Evans M, Clase C, Tomlinson L, van Diepen M, Dekker F, et al. Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A Nationwide Study. J Am Soc Nephrol. 2021;32(2):424-35. https://doi.org/10.1681/ASN.2020050682

- Nakayama T, Morimoto K, Uchiyama K, Kusahana E, Washida N, Azegami T, et al. Effects of renin-angiotensin system inhibitors on the incidence of unplanned dialysis. Hypertens Res. 2022;45(6):1018-27. https://doi.org/10.1038/s41440-022-00877-5

- Whiting P, Morden A, Tomlinson L, Caskey F, Blakeman T, Tomson C, et al. What are the risks and benefits of temporarily discontinuing medications to prevent acute kidney injury? A systematic review and meta-analysis. BMJ Open. 2017;7(4):e012674. https://doi.org/10.1136/bmjopen-2016-012674

- Perner A, Prowle J, Joannidis M, Young P, Hjortrup PB, Pettilä V. Fluid management in acute kidney injury. Intensive Care Med. 2017;43(6):807-15. https://doi.org/10.1007/s00134-017-4817-x

- Perico N, Codreanu I, Schieppati A, Remuzzi G. The future of renoprotection. Kidney Int Suppl. 2005;97:S95-101. https://doi.org/10.1111/j.1523-1755.2005.09716.x

- Schieppati A, Remuzzi G. The June 2003 Barry M. Brenner Comgan lecture. The future of renoprotection: frustration and promises. Kidney Int. 2003;64(6):1947-55. https://doi.org/10.1046/j.1523-1755.2003.00340.x

- Taylor AJ, Hotchkiss D, Morse RW, McCabe J. PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest. 1998;114(6):1570-4. https://doi.org/10.1378/chest.114.6.1570

- Dussol B, Morange S, Loundoun A, Auquier P, Berland Y. A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant. 2006;21(8):2120-6. https://doi.org/10.1093/ndt/gfl133

- Mueller C, Buerkle G, Buettner H, Petersen J, Perruchoud A, Eriksson U, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162(3):329-36. https://doi.org/10.1001/archinte.162.3.329

- Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331(21):1416-20. https://doi.org/10.1056/NEJM199411243312104

- Merten GJ, Burgess P, Gray L, Holleman J, Roush T, Kowalchuk G, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291(19):2328-34. https://doi.org/10.1001/jama.291.19.2328

- Hiremath S, Akbari A, Shabana W, Fergusson DA, Knoll GA. Prevention of contrast-induced acute kidney injury: is simple oral hydration similar to intravenous? A systematic review of the evidence. PLoS One. 2013;8(3):e60009. https://doi.org/10.1371/journal.pone.0060009

- Nijssen EC, Rennenberg R, Nelemans P, Essers B, Janssen M, Vermeeren M, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312-22. https://doi.org/10.1016/S0140-6736(17)30057-0

- Liu Y, Hong D, Ying Wang A, Guo R, Smyth B, Liu J, et al. Effects of intravenous hydration on risk of contrast induced nephropathy and in-hospital mortality in STEMI patients undergoing primary percutaneous coronary intervention: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2019;19(1):87. https://doi.org/10.1186/s12872-019-1054-y

- Timal RJ, Kooiman J, Sijpkens Y, de Vries JP, Verberk-Jonkers I, Brulez H, et al. Effect of No Prehydration vs Sodium Bicarbonate Prehydration Prior to Contrast-Enhanced Computed Tomography in the Prevention of Postcontrast Acute Kidney Injury in Adults With Chronic Kidney Disease: The Kompas Randomized Clinical Trial. JAMA Intern Med. 2020;180(4):533-41. https://doi.org/10.1001/jamainternmed.2019.7428

- DiMari J, Megyesi J, Udvarhelyi N, Price P, Davis R, Safirstein R. N-acetyl cysteine ameliorates ischemic renal failure. Am J Physiol. 1997;272(3):F292-8. https://doi.org/10.1152/ajprenal.1997.272.3.F292

- Magner K, Ilin JV, Clark EG, Kong JY, Davis A, Hiremath S. Meta-analytic Techniques to Assess the Association Between N-acetylcysteine and Acute Kidney Injury After Contrast Administration: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(7):e2220671. https://doi.org/10.1001/jamanetworkopen.2022.20671

- Gonzales DA, Norsworthy K, Kern S, Banks S, Sieving P, Star R, et al. A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity. BMC Med. 2007;5:32. https://doi.org/10.1186/1741-7015-5-32

- Zagler A, Azadpour M, Mercado C, Hennekens CH. N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials. Am Heart J. 2006;151(1):140-5. https://doi.org/10.1016/j.ahj.2005.01.055

- Fishbane S. N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol. 2008;3(1):281-7. https://doi.org/10.2215/CJN.02590607

- Kroll MH, Roach NA, Poe B, Elin RJ. Mechanism of interference with the Jaffé reaction for creatinine. Clin Chem. 1987;33(7):1129-32. https://doi.org/10.1093/clinchem/33.7.1129

- McCudden C, Clark EG, Akbari A, Kong J, Kanji S, Hiremath S. N-Acetylcysteine Interference With Creatinine Measurement: An In Vitro Analysis. Kidney Int Rep. 2021;6(7):1973-6. https://doi.org/10.1016/j.ekir.2021.04.006

- Baker CS, Wragg A, Kumar S, De Palma R, Baker LR, Knight CJ. A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study. J Am Coll Cardiol. 2003;41(12):2114-8. https://doi.org/10.1016/s0735-1097(03)00487-x

- Li H, Wang C, Liu C, Li R, Zou M, Cheng G. Efficacy of Short-Term Statin Treatment for the Prevention of Contrast-Induced Acute Kidney Injury in Patients Undergoing Coronary Angiography/Percutaneous Coronary Intervention: A Meta-Analysis of 21 Randomized Controlled Trials. Am J Cardiovasc Drugs. 2016;16(3):201-19. https://doi.org/10.1007/s40256-016-0164-5

- Su X, Xie X, Liu L, Lv J, Song F, Perkovic V, et al. Comparative Effectiveness of 12 Treatment Strategies for Preventing Contrast-Induced Acute Kidney Injury: A Systematic Review and Bayesian Network Meta-analysis. Am J Kidney Dis. 2017;69(1):69-77. https://doi.org/10.1053/j.ajkd.2016.07.033

- Briasoulis A, Mallikethi-Reddy S, Sharma S, Briasouli AA, Afonso L. 3-Hydroxy-3-methylglutaryl-CoA reductase enzyme inhibitors for prevention of contrast-induced nephropathy: a meta-analysis of prospective randomized controlled studies. Am J Ther. 2015;22(6):e158-166. https://doi.org/10.1097/MJT.0000000000000126

- Toso A, Maioli M, Leoncini M, Gallopin M, Tedeschi D, Micheletti C, et al. Usefulness of atorvastatin (80 mg) in prevention of contrast-induced nephropathy in patients with chronic renal disease. Am J Cardiol. 2010;105(3):288-92. https://doi.org/10.1016/j.amjcard.2009.09.026

- Subramaniam RM, Suarez-Cuervo C, Wilson R, Turban S, Zhang A, Sherrod C, et al. Effectiveness of Prevention Strategies for Contrast-Induced Nephropathy: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164(6):406-16. https://doi.org/10.7326/M15-1456

- Bagshaw SM, Ghali WA. Theophylline for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Arch Intern Med. 2005;165(10):1087-93. https://doi.org/10.1001/archinte.165.10.1087

- Sadat U, Usman A, Gillard JH, Boyle JR. Does ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography: a systematic review with meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;62(23):2167-75. https://doi.org/10.1016/j.jacc.2013.07.065

- Martha JW, Pranata R, Wibowo A, Irvan I, Afrianti R, Akbar MR. The effect of trimetazidine on contrast-induced nephropathy in patients undergoing coronary angiography and/or percutaneous coronary intervention - A systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021;25(7):3045-53. https://doi.org/10.26355/eurrev_202104_25558

- Bellos I, Iliopoulos DC, Perrea DN. Allopurinol Administration for the Prevention of Contrast-Induced Nephropathy: A Network Meta-analysis With Trial Sequential Analysis. J Cardiovasc Pharmacol. 2019;73(5):307-15. https://doi.org/10.1097/FJC.0000000000000663

- Geng N, Zou D, Chen Y, Ren L, Xu L, Pang W, et al. Prostaglandin E1 administration for prevention of contrast-induced acute kidney injury: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2018;97(29):e11416. https://doi.org/10.1097/MD.0000000000011416

- Marenzi G, Bartorelli AL. Recent advances in the prevention of radiocontrast-induced nephropathy. Curr Opin Crit Care. 2004;10(6):505-09. https://doi.org/10.1097/01.ccx.0000145098.13199.e8

- Monami M, Cignarelli A, Pinto S, D’Onofrio L, Milluzzo A, Miccoli R, et al. Alpha-tocopherol and contrast-induced nephropathy: A meta-analysis of randomized controlled trials. Int J Vitam Nutr Res. 2021;91(1-2):188-96. https://doi.org/10.1024/0300-9831/a000573

- Ma X, Li X, Jiao Z, Zhang Y. Nicorandil for the prevention of contrast-induced nephropathy: A meta-analysis of randomized controlled trials. Cardiovasc Ther. 2018;36(2). https://doi.org/10.1111/1755-5922.12316

- Majumdar SR, Kjellstrand CM, Tymchak WJ, Hervas-Malo M, Taylor DA, Teo KK. Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis. 2009;54(4):602-9. https://doi.org/10.1053/j.ajkd.2009.03.024

- Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29(8):1526-31. https://doi.org/10.1097/00003246-200108000-00005

- Mohamed H, Al-Shimaa M, Lobna A. Ginger extract protect Iodinated Contrast Media Nephrotoxicity in rats through modulation of Oxidative Stress, Cystain C, NGAL and TNF ?. Res J Phar Technol. 2018;11(12):5439-48. https://doi.org/10.5958/0974-360X.2018.00992.7

- Nasri H, Hajuan S, Ahmadi A, Baradaran A, Kohi G, Nasri P, et al. Ameliorative effect of green tea against contrast-induced renal tubular cell injury. Iran J Kidney Dis. 2015;9(6):421-6.

- Liang R, Zhao Q, Jian G, Cheng D, Wang N, Zhang G, et al. Tanshinone IIA Attenuates Contrast-Induced Nephropathy via Nrf2 Activation in Rats. Cell Physiol Biochem. 2018;46(6):2616-23. https://doi.org/10.1159/000489688

- Sedighifard Z, Roghani F, Bidram P, Harandi SA, Molavi S. Silymarin for the Prevention of Contrast-Induced Nephropathy: A Placebo-Controlled Clinical Trial. Int J Prev Med. 2016;7(23). https://doi.org/10.4103/2008-7802.174762

- Buyuklu M, Kandemir FM, Ozkaraca M, Set T, Bakirci EM, Topal E. Protective effect of curcumin against contrast induced nephropathy in rat kidney: what is happening to oxidative stress, inflammation, autophagy and apoptosis? Eur Rev Med Pharmacol Sci. 2014;18(4):461-70.

- Huang YT, Chen YY, Lai YH, Cheng CC, Lin TC, Su YS, et al. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro. Int J Mol Med. 2016;37(1):83-91. https://doi.org/10.3892/ijmm.2015.2404

- Topalo?lu US, Sipahiohglu MH, Güntürk I, Akgün H, Dogan M, Sönmez G, et al. Effects of thymoquinone in prevention of experimental contrast-induced nephropathy in rats. Iran J Basic Med Sci. 2019;22(12):1432-9. https://doi.org/10.22038/IJBMS.2019.13990

- Rodby RA. Preventing complications of radiographic contrast media: is there a role for dialysis? Semin Dial. 2007;20(1):19-23. https://doi.org/10.1111/j.1525-139X.2007.00233.x

- Cruz DN, Goh CY, Marenzi G, Corradi V, Ronco C, Perazella MA. Renal replacement therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Med. 2012;125(1):66-78. https://doi.org/10.1016/j.amjmed.2011.06.029

- Susantitaphong P, Eiam-Ong S. Nonpharmacological strategies to prevent contrast-induced acute kidney injury. Biomed Res Int. 2014:463608. https://doi.org/10.1155/2014/463608

- Deray G. Dialysis and iodinated contrast media. Kidney Int Suppl. 2006;100:S25-9. https://doi.org/10.1038/sj.ki.5000371

- Shemin D, Bostom AG, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis. 2001;38(1):85-90. https://doi.org/10.1053/ajkd.2001.25198

- van der Wal WM, Noordzij M, Dekker F, Boeschoten E, Krediet R, Korevaar J, et al. Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol Dial Transplant. 2011;26(9):2978-83. https://doi.org/10.1093/ndt/gfq856

- Mathew AT, Fishbane S, Obi Y, Kalantar-Zadeh K. Preservation of residual kidney function in hemodialysis patients: reviving an old concept. Kidney Int. 2016;90(2):262-71. https://doi.org/10.1016/j.kint.2016.02.037

- Oloko A, Talreja H, Davis A, McCormick B, Clark E, Akbari A, et al. Does Iodinated Contrast Affect Residual Renal Function in Dialysis Patients? A Systematic Review and Meta-Analysis. Nephron. 2020;144(4):176-184. https://Doi.org/10.1159/000505576

- Abujudeh HH, Gee MS, Kaewlai R. In emergency situations, should serum creatinine be checked in all patients before performing second contrast CT examinations within 24 hours? J Am Coll Radiol. 2009;6(4):268-73. https://doi.org/10.1016/j.jacr.2008.09.014

- Trivedi H, Foley WD. Contrast-induced nephropathy after a second contrast exposure. Ren Fail. 2010;32(7):796-801. https://doi.org/10.3109/0886022X.2010.495441

- Lee SR, Dardik A, Ochoa Chaar CI. Postcontrast Acute Kidney Injury after Peripheral Vascular Interventions in Kidney Transplant Recipients. Ann Vasc Surg. 2020;68:8-14. https://doi.org/10.1016/j.avsg.2020.04.057

- Rihal CS, Textor S, Grill D, Berger P, Ting H, Best P, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105(19):2259-64. https://doi.org/10.1161/01.cir.0000016043.87291.33

- Bedoya MA, White AM, Edgar JC, Pradhan M, Raab EL, Meyer JS. Effect of Intravenous Administration of Contrast Media on Serum Creatinine Levels in Neonates. Radiology. 2017;284(2):530-40. https://doi.org/10.1148/radiol.2017160895

- Cantais A, Hammouda Z, Mory O, Patural H, Stephan JL, Gulyaeva L, et al. Incidence of contrast-induced acute kidney injury in a pediatric setting: a cohort study. Pediatr Nephrol. 2016;31(8):1355-62. https://doi.org/10.1007/s00467-016-3313-9

- Standen JR, Nogrady MB, Dunbar JS, Goldbloom RB. The Osmotic Effects of Methylglucamine Diatrizoate (Renografin 60) in Intravenous Urography in Infants. Am J Roentgenol Radium Ther Nucl Med. 1965;93:473-9.

- Morris TW, Harnish PP, Reece K, Katzberg RW. Tissue fluid shifts during renal arteriography with conventional and low osmolality agents. Invest Radiol. 1983;18(4):335-40. https://doi.org/10.1097/00004424-198307000-00008

- Trout AT, Dillman JR, Ellis JH, Cohan RH, Strouse PJ. Patterns of intravenous contrast material use and corticosteroid premedication in children--a survey of Society of Chairs of Radiology in Children’s Hospitals (SCORCH) member institutions. Pediatr Radiol. 2011;41(10):1272-83. https://doi.org/10.1007/s00247-011-2112-5

- Amaral JG, Traubici J, BenDavid G, Reintamm G, Daneman A. Safety of power injector use in children as measured by incidence of extravasation. AJR Am J Roentgenol. 2006;187(2):580-3. https://doi.org/10.2214/AJR.05.0667

- Cohen MD. Safe use of imaging contrast agents in children. J Am Coll Radiol. 2009;6(8):576-81. https://doi.org/10.1016/j.jacr.2009.04.003

- Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259-63. https://doi.org/10.1542/peds.58.2.259

- Dharnidharka V, Know Ch, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. J Kidney Dis. 2002 ag.;40(2): 221-6. https://doi.org/10.1053/ajkd.2002.34487

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Dimensions


PlumX


Downloads

Download data is not yet available.