COVID-19. Opciones terapéuticas desde la viro-patogénesis a la evidencia clínica
PDF

Palabras clave

virus del SRAS, coronavirus, glicoproteína de la espiga del coronavirus, cloroquina, antivirales, inmunización pasiva, vacunas.

Cómo citar

1.
González J, González AM. COVID-19. Opciones terapéuticas desde la viro-patogénesis a la evidencia clínica. Rev. Colomb. Nefrol. [Internet]. 15 de abril de 2020 [citado 3 de julio de 2024];7(Supl.2). Disponible en: https://revistanefrologia.org/index.php/rcn/article/view/433

Resumen

Cada vez sabemos más sobre este enemigo mortal de la familia de los Betacoronavirus, llamado inicialmente 19-nCoV, causante de la COVID-19 (Coronavirus infectous disease por su sigla en inglés), hoy clasificado SARS-CoV-2, porque es responsable de producir el SARS (síndrome respiratorio agudo severo, por sus siglas en inglés) y que comparte una fuerte homología de secuencia con el SARS-CoV, su primo hermano causante de la epidemia en 2003 del SARS, ambos capaces de diseminarse rápidamente, en particular este, y causar un gran caos mundial como ha sucedido con esta pandemia. Con base en estudios previos de focalización en el SARS-CoV, y también en el virus causante del MERS (síndrome respiratorio del Oriente Medio, por sus siglas en inglés), y con el conocimiento que se tiene actualmente sobre el SARS-CoV-2, se exploran en este articulo algunas opciones terapéuticas para el manejo de la infección por este virus complejo y con capacidad letal, mencionando algunos aspectos de relevancia patogénica.
Se enfatizó en las posibles alternativas de manejo desde la fisiopatología y patogénesis hasta la evidencia actualmente disponible. Exploraremos el uso probable de ECA2 recombinante, algunas moléculas experimentales, revisaremos los antimaláricos (cloroquina e hidroxicloroquina), esteroides, azitromicina, antivirales específicos como remdesivir, lopinavir/ritonavir, biológicos como tocilizumab, anticuerpos monoclonales antivirales, y haremos énfasis en la trasfusión de plasma de convalecientes desde el principio de inmuni- zación pasiva, de gran utilidad.

https://doi.org/10.22265/acnef.7.Supl.2.433
PDF

Citas

Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-69.

Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.

Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.

Harcourt J, Tamin A, Lu X, et al. Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States. Centers Dis Control Prev. 2020;26(6).

Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-207.

Jiang X, Rayner S, Luo MH. Does SARS-CoV-2 has a longer incubation period than SARS and MERS? J Med Virol. 2020;92(5):476-478.

Tang B, Wang X, Li Q, et al. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. J Clin Med. 2020;9(462).

Zhao S, Lin Q, Ran J, Musa SS, Yang G. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92.

A C-CL, Shihb T-P, Koc W-C, D H-JT, Po-Ren Hsueh. Severe acute respiratory syndrome coronavirus 2 (SARS- oV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55.

Li F. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies. J Virol. 2015;89(4):1954-64.

Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74.

Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: Structure and genome expression. J Gen Virol. 1988;69(12):2939-52.

Zhong NS, Zeng GQ. Pandemic planning in China: Applying lessons from severe acute respiratory syndrome. Respirology. 2008;13(SUPPL. 1):33-5.

Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;(February):2019-21.

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-zoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-90.

Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. ChemBioChem. 2020;21(5):730-38.

Kruse R. herapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000research. 2020;9(72).

National Health Commission of the People’s Republic of China. Notice on printing and distributing the convalescent plasma treatment for novel coronavirus pneumonia (trial version 2). Available from: ttp://www.nhc.gov.cn/yzygj/s7658/202003/61d608a7e8bf49fca418a6074c2bf5a2.shtml (accessed March 4, 2020). 2020

Lu S. Timely development of vaccines against SARS-CoV-2. Emerg Microbes Infect. 2020;9:542-44.

Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9(1):382-85.

Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019- nCov. bioRxiv. 2020:2020.01.26.919985.

Zheng M, Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol. 2020;17(5):536-38.

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80.e8.

Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med J. 2003;9(6):399-406.

Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus— A possible reference for coronavirus disease-19 treatment option. J Med Virol. 020;92(6):556-63.

Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9(396).

Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1).

Falzarano D, De Wit E, Rasmussen AL, et al. Treatment with interferon-a2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med. 2013;19(10):1313-317.

EP T, JY F, DP P, M G. Mechanism of inhibition of Ebola virus RNA-dependent RNA Polymerase by remdesivir. Viruses. 2019;11(4).

Wit E de, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A. 2020;117(12):6771-776.

Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNAdependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295(15):4773-779.

Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71.

Bosseboeuf E, Aubry M, Nhan T, et al. Azithromycin Inhibits the Replication of Zika Virus. J Antivir Antiretrovir. 2018;10(1):6-11.

Bacharier LB, Guilbert TW, Mauger DT, et al. Early Administration of Azithromycin and Prevention of Severe Lower Respiratory Tract Illnesses in Preschool Children With a History of Such Illnesses: A Randomized Clinical Trial. JAMA - J Am Med Assoc. 2015;314(19):2034-44.

Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113(50):14408-13.

Madrid PB, Panchal RG, Warren TK, et al. Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect Dis. 2015;1(7).

Savarino A, Trani L Di, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67-9.

Zhi Z jie he he hu xi za. [Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia]. Chinese J Tuberc Respir Dis. 2020;43(3):185-88.

Yan Y, Zou Z, Sun Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23(2):300-02.

Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents. 2020;55(3).

Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020:105932. doi:10.1016/j.ijantimicag.2020.105932

Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-3.

Biot C, Daher W, Chavain N, et al. Design and Synthesis of Hydroxyferroquine Derivatives with Antimalarial and Antiviral Activities. J Med Chem. 2006;49(9):2845-49.

Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Main point: Hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit. Clin Infect Dis. 2020;2:1-25.

Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279-83.

Xu X, Han P, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970-75.

Zhou Y, Fu B, Zheng X, et al. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. 2020.

Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-5.

Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020;5(18).

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-92.e6.

Li G, Clercq E De. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020;19(3):149-50.

Mulangu S, Dodd LE, Davey RT, et al. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 2019;381(24):2293-303.

Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020;20(4):398-400.

Garraud O, Heshmati F, Pozzetto B, et al. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfus Clin Biol. 2016;23(1):39-44.

Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus. 2016;14(2):152-57.

China. NHC of the PR of. Notice on printing and distributing the convalescent plasma treatment for novel coronavirus pneumonia (trial version 2). Available from: http://www.nhc.gov.cn/yzygj/s7658/202003/61d608a7e8bf49fca418a6074c2bf5a2.shtml (accessed March 4, 2020). 2020.

Lu S. Timely development of vaccines against SARS-CoV-2. Emerg Microbes Infect. 2020;9(6):542-44. 58. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80). 2020;367(6483):1260-63.

Lucchese G. Epitopes for a 2019-nCoV vaccine. Cell Mol Immunol. 2020;17(5):539-40. 60. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS- CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020;12(3).

Pang J, Wang MX, Ang IYH, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J Clin Med. 2020;9(3):623.

  1. Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Creative Commons Reconocimiento- NoComercial- SinObraDerivada 4.0 Internacional. que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.