COVID 19 La evidencia clínica contra la pared

  • Jairo Hernán González Bautista
Palabras clave: SARS-COV-2, COVID 19, EVIDENCE, CHLOROQUINE, REMDESIVIR, CONVELESENT PLASMA, VACCINES

Resumen

Cada vez sabemos mas sobre este enemigo mortal de la familia de los Betacoronavirus, llamado inicialmente 19 n CoV causante de la  COVID 19 (Coronavirus infectous disease por su sigla en Inglés), hoy clasificado SARS-COV-2, porque es responsable de producir el SARS (síndrome respiratorio agudo severo, de sus siglas en inglés), y de esta pandemia.

Nunca antes se había retado de esta manera a la ciencia, y en particular a los clínicos que además de luchar por la vida y la salud de sus pacientes, luchan por las propias.

No hay datos precisos sobre como contener al SARS-CoV-2, y tampoco de cómo tratarlo efectivamente. Se espera evidencia, pero no hay suficiente, sin embargo el clínico debe actuar, el epidemiólogo también y los sistemas de salud, los países y la sociedad igual.

Qué hacer sin evidencia?

Pues bien la ausencia de evidencia tal como está establecido hoy día, no quiere decir que haya ausencia de ciencia, por lo tanto aunque la evidencia está contra la pared, la ciencia médica no lo está; existen muchas opciones terapéuticas , así como modelos epidemiológicos para evitar la expansión el virus, que vienen siendo usados y tendrán que irse adaptando en manos lógicas y justas, para ir construyendo el suficiente conocimiento que nos ayude a superar esta crisis

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. Zhu N , Zhang D , Wang W , Li X , Yang B , Song J , et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–33 .

2. Wu F , Zhao S , Yu B , Chen YM , Wang W , Song ZG , et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265–9 .

3. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for C. 2020. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med.

4. Harcourt J , Tamin A , Lu X , Kamili S , Sakthivel SK , Murray J , et al. Severe Acute Respiratory Syndrome Coronavirus 2 from patient with 2019 novel Coronavirus disease, United States. Emerging Infect Dis 2020;26 .

5. Li Q , Guan X , Wu P , Wang X , Zhou L , Tong Y , et al. Early transmission dynamics in Wuhan, China, of novel Coronavirus infected pneumonia. N Engl J Med 2020;382:1199–207 .

6. Jiang X , Rayner S , Luo MH . Does SARS-CoV-2 has a longer incubation period than SARS and MERS? J Med Virol 2020;92:476–8 .

7. Tang B , Wang X , Li Q , Bragazzi NL , Tang S , Xiao Y , et al. Estimation of the transmission risk of the 2019-nCoV and Its implication for public health inter- ventions. J Clin Med 2020;9 .

8. Zhao S , Lin Q , Ran J , Musa SS , Yang G , Wang W , et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020;92:214–17 .

9. Lai CC , Shih TP , Ko WC , Tang HJ , Hsueh PR . Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020:105924 .

10. Zhong NS , Zeng GQ . Pandemic planning in China: applying lessons from severe acute respiratory syndrome. Respirology 2008;13(Suppl 1):S33–5 .

11. Lu R , Zhao X , Li J , Niu P , Yang B , Wu H , et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565–74 .

12. Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: structure and genome expression. J Gen Virol.1988; 69 (Pt 12):2939–52.

13. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S, Lu L. 2020. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol doi:10.1038/s41423-020-0374-2.

14. Kruse RL. 2020. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Res 9:72.

15. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C,Pohlmann S. 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell doi:10.1016/j.cell.2020.02.052.

16. Morse Jared, et al. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. ChemBioChem 2020, 21, 730 – 738

17. Savarino A , Di Trani L , Donatelli I , Cauda R , Cassone A . New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006;6:67–9 .

18. Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV2. Int J Antimicrob Agents. 2020 Feb 15:105923. doi: 10.1016/j.ijantimicag.2020.105923.

19. Multicenter collaboration group of Department of Science and Technology of Guangdong Province and Health Commission of Guangdong Province for chloroquine in the treatment of novel coronavirus pneumonia. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia].

20. Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 2006;49:2845-2849.

21. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020 Mar 9.

22. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020 Mar 12;43(3):185-188.

23. Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14408-14413.

24. Madrid PB, Panchal RG, Warren TK, Shurtleff AC, Endsley AN, Green CE, Kolokoltsov A, et al. Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect Dis. 2015 Jul 10;1(7):317-26. doi: 10.1021/acsinfecdis.5b00030. Epub 2015 May 11.

25. Bosseboeuf E, Aubry M, Nhan T, de Pina, JJ, Rolain JM, Raoult D, et al. Azithromycin inhibits the replication of Zika virus. J Antivirals Antiretrovirals. 2018 10(1):6-11.

26. Bacharier LB, Guilbert TW, Mauger DT, Boehmer S, Beigelman A, Fitzpatrick AM, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: A randomized clinical trial. JAMA. 2015 Nov 17;314(19):2034-2044.

27. Chan KS , Lai ST , Chu CM , Tsui E , Tam CY , Wong MML , et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a mul- ticentre retrospective matched cohort study. Hong Kong Med J 2003;9: 399–406 .

28. Yao T-T , Qian J-D , Zhu W-Y , Wang Y , Wang G-Q . A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020 .

29. Tchesnokov EP , Feng JY , Porter DP , Gotte M . Mechanism of inhibition of Ebola virus RNA-dependent RNA Polymerase by remdesivir. Viruses 2019;11 .

30. Sheahan TP , Sims AC , Leist SR , Schafer A , Won J , Brown AJ , et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11:222 .

31. Gordon CJ , Tchesnokov EP , Feng JY , Porter DP , Gotte M . The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 2020 .

32. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;10-0282.

33. Martinez MA . Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother 2020 .

34. Zhou Y FB, Zheng X, Wang D, Zhao, C, Qi Y, Sun R, Tian Z, Xu X, Wei H. 2020. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. BioRxiv doi:https://doi.org/10.1101/2020.02.12.945576.

35. Russell CD, Millar JE, Baillie JK. 2020. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395:473-475.

36. Zhou W, Liu Y, Tian D, 369 Wang C, Wang S, Cheng J, Hu M, Fang M, Gao Y. 2020. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther 5:18.

37. Fu Y, Cheng Y, Wu Y. 2020. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools.Virol Sin doi:10.1007/s12250-020-00207-4.

38. Zhang Chi, et alt. The cotokine reléase síndrome (CRS) of severe COVID -19 and Interleukin-6 receptor (IL-6) antagonist Tocilizumab may be teh key to reduce mortality. https://doi.org/10.16/j.ijantimicag.2020.105954

39. Xiaoling Xu, Mingfeng Han, Tiantian Li, et al., Effective Treatment of Severe COVID 19 Patients with Tocilizumab. http://chinaxiv.org/abs/202003.00026

40. Chen L, Xiong J, Bao L, Shi Y. 2020. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis doi:10.1016/S1473-3099(20)30141-9.

41. Garraud O, Heshmati F, Pozzetto B, Lefrere F, Girot R, Saillol A, Laperche S. 2016. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfus Clin Biol 23:39-44.

42. Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Liumbruno GM, Grazzini G. 2016. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus 14:152-7.

43. National Health Commission of the People's Republic of China. Notice on printing and distributing the convalescent plasma treatment for novel coronavirus pneumonia (trial version 2).
http://www.nhc.gov.cn/yzygj/s7658/202003/61d608a7e8bf49fca418a6074c2bf5a2.shtml(accessed March 4, 2020).

44. Lu S. 2020. Timely development of vaccines against SARS-CoV-2. Emerg Microbes Infect 9:542-544.

45. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y,Ying T. 2020. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 9:382-385.

46. Zheng M, Song L. 2020. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol doi:10.1038/s41423-020-0385-z.

47. Li G, De Clercq E. 2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19:149-150.

48. Morse JS, Lalonde T, Xu S, Liu WR. 2020. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chembiochem 21:730-738.

49. Lucchese G. 2020. Epitopes for a 2019-nCoV vaccine. Cell Mol Immunol doi:10.1038/s41423-020-0377-z.

50. Ahmed SF, Quadeer AA, McKay MR. 2020. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses 12.

51. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI, Gutierrez RA, Gwee SXW, Chua PEY, Yang Q, Ng XY, Yap RK, Tan HY, Teo YY, Tan CC, Cook AR, Yap JC, Hsu LY. 2020. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review.J Clin Med 9.
Publicado
2020-06-03
Cómo citar
1.
González Bautista JH. COVID 19 La evidencia clínica contra la pared. Rev. Colomb. Nefrol. [Internet]. 3 de junio de 2020 [citado 14 de julio de 2020];7(Supl.2). Disponible en: https://revistanefrologia.org/index.php/rcn/article/view/416
Sección
Carta al editor