COVID-19. La evidencia clínica contra la pared

  • Jairo González Asociación Colombiana de Nefrología, Bogotá D.C., Colombia; Sociedad Latinoamericana de Nefrología e Hipertensión Arterial, Bogotá D.C., Colombia; Asociación Colombiana de Medicina Interna, Bogotá D.C., Colombia; Departamento de Nefrología, Nefrovalle S.A.S, Tulua, Colombia.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. http://dx.doi.org/10.1056/NEJMoa2001017.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. http://dx.doi.org/10.1038/s41586-020-2008-3.

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. http://dx.doi.org/10.1056/NEJMoa2002032.

Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel SK, Murray J, et al. Severe Acute Respiratory Syndrome Coronavirus 2 from patient with 2019 novel Coronavirus disease, United States. Emerg Infect Dis. 2020;26(6):1266-73. http://dx.doi.org/10.3201/eid2606.200516.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel Coronavirus infected pneumonia. N Engl J Med. 2020;382(13):1199-207. http://dx.doi.org/10.1056/NEJMoa2001316.

Jiang X, Rayner S, Luo MH. Does SARS-CoV-2 has a longer incubation period than SARS and MERS? J Med Virol. 2020;92(5):476-8. http://dx.doi.org/10.1002/jmv.25708. 7. Tang B, Wang X, Li Q, Bragazzi NL, Tang S, Xiao Y, et al.

Estimation of the transmission risk of the 2019-nCoV and Its implication for public health interventions. J Clin Med. 2020;9(2):462. http://dx.doi.org/10.3390/jcm9020462.

Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and

coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020:55(3):105924. http: //dx.doi.org/10.1016/j.ijantimicag.2020.105924.

Zhong NS, Zeng GQ. Pandemic planning in China: Applying lessons from Zhong NS, Zeng GQ. Pandemic planning in China: applying lessons from severe acute respiratory syndrome. Respirology. 2008;13(Suppl 1):S33-5. http://dx.doi.org/10.1111/j.1440-1843.2008.01255.x.

Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214- 7. http://dx.doi.org/10.1016/j.ijid.2020.01.050.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. https://doi.org/10.1016/S0140-6736(20)30251-8.

Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: structure and genome expression. J Gen Virol.1988;69(12):2939-52.

Martínez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020;64:e00399-20. https://doi.org/10.1128/ AAC.00399-20.

Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. BioRxiv. 2020. http://dx.doi.org/10.1101/2020.02.12.945576.

Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-5. http://dx.doi.org/10.1016/ S0140-6736(20)30317-2.

Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol Sin; 2020. http://dx.doi.org/10.1007/ s12250-020-00207-4.

Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect is. 2006;6(2):67-9. http://dx.doi.org/10.1016/S1473-3099(06)70361-9.

Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV2. Int J Antimicrob Agents.

;55(3):105923. http://dx.doi.org/10.1016/j.ijantimicag.2020.105923.

Multicenter collaboration group of Department of Science and Technology of Guangdong Province and Health Commission of Guangdong Province for chloroquine in the treatment of novel coronavirus pneumonia. [Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(3):185-8. http://dx.doi.org/10.3760/cma.j.issn.1001-0939.2020.03.009.

Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem. 2006;49(9):2845-9. http://dx.doi.org/10.1021/jm0601856.

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;ciaa237. http://dx.doi.org/10.1093/cid/ciaa237.

Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020:1-3. http://dx.doi.org/10.1038/s41423-020-0374-2.

Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Res. 2020:9:72. http://dx.doi.org/10.12688/f1000research.22211.2.

Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80.

http://dx.doi.org/10.1016/ j.cell.2020.02.052.

Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCo V. ChemBioChem. 2020;21(5):730-8. http://dx.doi.org/10.1002/ cbic.202000047.

Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, et al. Zika virus cell tropism in the

developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113(50):14408-13. http://dx.doi.org/10.1073/pnas.1618029113.

Madrid PB, Panchal RG, Warren TK, Shurtleff AC, Endsley AN, Green CE, et al. Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect Dis. 2015;1(7):317-26. http:// x.doi.org/10.1021/acsinfecdis.5b00030.

Bosseboeuf E, Aubry M, Nhan T, de Pina JJ, Rolain JM, Raoult D, et al. Azithromycin inhibits the replication of Zika virus. J Antivirals Antiretrovirals. 2018;10(1):6-11. http://dx.doi.org/10.4172/1948-5964.1000173.

Bacharier LB, Guilbert TW, Mauger DT, Boehmer S, Beigelman A, Fitzpatrick AM, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: A randomized clinical trial. JAMA. 2015;314(19):2034-44. http://dx.doi.org/10.1001/jama.2015.13896.

Zhou W, Liu Y, Tian D, Wang C, Wang S, Cheng J, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020;5(1):18. http://dx.doi.org/10.1038/s41392-020-0127-9.

Chan KS, Lai ST, Chu CM, Tsui E, Tam CY, Wong MML, et al. Treatment of severe acute respiratory syndrome with lopinavir/ ritonavir: a mul- ticentre retrospective matched cohort study. Hong Kong Med J. 2003;9(6):399-406.

Tchesnokov EP, Feng JY, Porter DP, Gotte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA Polymerase by remdesivir. Viruses 2019;11(4):326. http://dx.doi.org/10.3390/ v11040326.

Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11:222. http://dx.doi.org/10.1038/s41467-019-13940-6. Rev.Colomb. Nefrol. Volumen7 (Supl.2):363-367, http://dx.doi.org/10.22265/acnef.7.Supl.2.41

Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M. The antiviral compound remdesivir potently inhibits RNAdependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295(15):4773-9. http://dx.doi.org/ 10.1074/jbc.AC120.013056.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71. http://dx.doi.org/10.1038/s41422-020-0282-0.

Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Liumbruno GM, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus. 2016;14(2):152-7. http:// dx.doi.org/10.2450/2015.0131-15.

Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al., Effective Treatment of Severe COVID 19 Patients with Tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970-5. http:// dx.doi.org/10.1073/pnas.2005615117.

Chen L, Xiong J, Bao L, Shi Y. 2020. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. http:// dx.doi.org/10.1016/S1473-3099(20)30141-9.

Garraud O, Heshmati F, Pozzetto B, Lefrere F, Girot R, Saillol A, et al. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfus Clin Biol. 2016;23(1): 39-44. http://dx.doi.org/10.1016/j.tracli.2015.12.003.

National Health Commission of the People’s Republic of China. [Notice on printing and distributing the convalescent plasma treatment for novel coronavirus pneumonia]. 2020 [citado Mar 4 2020]. Disponible en: http://www.nhc.gov.cn/yzygj/ s7658/202003/61d608a7e8bf49fca418a6074c2bf5a2.shtml.

Lu S. Timely development of vaccines against SARS-CoV-2. Emerg Microbes Infect. 2020;9(1):542-4.

http://dx.doi.org/10.1080/22221751.2020.1737580.

Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS

coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9(1):382-5. http://dx.doi.org/10.1080/22221751.2020.1729069.

Zheng M, Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol. 2020;17(5):536-8. http:// dx.doi.org/10.1038/s41423-020-0385-z.

Li G, De Clercq E. 2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov.

;19(3):149-50. http://dx.doi.org/ 10.1038/d41573-020-00016-0.

Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020;12(3):254. http://dx.doi.org/10.3390/v12030254.

Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J Clin Med. 2020;9(3). http://dx.doi.org/10.3390/jcm9030623

Publicado
2020-06-03
Cómo citar
1.
González J. COVID-19. La evidencia clínica contra la pared . Rev. Colomb. Nefrol. [Internet]. 3 de junio de 2020 [citado 27 de septiembre de 2020];7(Supl.2). Disponible en: https://revistanefrologia.org/index.php/rcn/article/view/416