Tricarboxylic Cycle Intermediates in Combination with Calcium Phosphate Chelators and Sodium Bicarbonate Increases eGFR in Patients with Stages 3b, 4 and 5 CKD: A Retrospective Observational Study
PDF

Keywords

Chronic kidney disease
CKD-EPI
Creatinine
Estimated glomerular filtration rate
TCA
Nephroprotection

How to Cite

1.
Hernández Miramontes JA, Méndez Durán A, Hernández Villanueva JA. Tricarboxylic Cycle Intermediates in Combination with Calcium Phosphate Chelators and Sodium Bicarbonate Increases eGFR in Patients with Stages 3b, 4 and 5 CKD: A Retrospective Observational Study. Rev. Colomb. Nefrol. [Internet]. 2024 May 29 [cited 2024 Dec. 11];11(2). Available from: https://revistanefrologia.org/index.php/rcn/article/view/778

Abstract

Introduction: Currently, the conservative management of chronic kidney disease (CKD) involves treating the primary disease and its consequences, as well as improving altered biochemical markers. Evidence suggests that the key management strategy for slowing down the progression of the disease is nephroprotection.

Objective: This study aimed to evaluate the effect of the supply of TCA cycle intermediates in combination with calcium carbonate, calcium lactate, and sodium bicarbonate in patients with CKD.

Methodology: A retrospective observational study was undertaken in nephrology and internal medicine clinics in Mexico. The study enrolled patients aged over 18 with stages 3b, 4, and 5 chronic kidney disease (CKD) who were not undergoing renal replacement therapy (RRT) and had received treatment based on TCA therapy.

Results: The study included a total of 55 patients with CKD. The results showed an increase in eGFR from a baseline average of 16.73 ± 1,374 mL/min to a final average of 19.18 ± 1,516 mL/min and a decrease in creatinine values from a baseline average of 4.26 ± 2.44 mg/dL to a final average of 3.77 ± 2.23 mg/dL. These changes had a statistical significance P?0.05.

Conclusions: The observed benefits of TCA in combination with sodium bicarbonate, calcium carbonate, and calcium lactate include: 1) Increased eGFR, 2) Decreased serum creatinine, 3) Decreased serum urea, 4) Decreased serum phosphorus, 5) Increased serum hemoglobin, and 6) Maintenance of albumin levels within normal ranges. Adjuvant therapy with the combination of TCA could be a useful tool as a new therapeutic option in patients with CKD.

https://doi.org/10.22265/acnef.11.2.778
PDF

References

Hsu HT, Chiang YC, Lai YH, Lin LY, Hsieh HF, Chen JL. Effectiveness of multidisciplinary care for chronic kidney diseases: A Systematic Review. Worldviews Evid Based Nurs. 2021;18(1):33-41. https://doi.org/10.1111/wvn.12483

Khan Z, Pandey M. Role of kidney biomarkers of chronic kidney disease: An update. Saudi J Biol Sci. 2014;21(4):294–299. https://doi.org/10.1016/j.sjbs.2014.07.003

Stompór T, Adamczak M, Kurnatowska I, Naumnik B, Nowicki M, Tylicki L, et al. Pharmacological Nephroprotection in Non-Diabetic Chronic Kidney Disease-Clinical Practice Position Statement of the Polish Society of Nephrology. J Clin Med. 2023;12(16):5184. https://doi.org/10.3390/jcm12165184

de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075-84. https://doi.org/10.1681/ASN.2008111205

Adamczak M, Surma S. Metabolic Acidosis in Patients with CKD: Epidemiology, Pathogenesis, and Treatment. Kidney Dis (Basel). 2021;7(6):452-467. https://doi.org/10.1159/000516371

Jiménez-Uribe AP, Hernández-Cruz EY, Ramírez-Magaña KJ, Pedraza-Chaverri J. Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules. 2021;11(9):1259. https://doi.org/10.3390/biom11091259

Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease. J Am Soc Nephrol. 2013;24(11):1901–12. https://doi.org/10.1681/ASN.2013020126

Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14(5):291–312. https://doi.org/10.1038/nrneph.2018.9

Hallan S, Afkarian M, Zelnick LR, Kestenbaum B, Sharma S, Saito R, et al. Metabolomics and Gene Expression Analysis Reveal Down-regulation of the Citric Acid (TCA) Cycle in Non-diabetic CKD Patients. EbioMedicine. 2017;26:68-77. https://doi.org/10.1016/j.ebiom.2017.10.027

Shah AP, Kalantar-Zadeh K, Kopple JD. Is there a role for ketoacid supplements in the management of CKD? Am J Kidney Dis. 2015;65(5):659-73. https://doi.org/10.1053/j.ajkd.2014.09.029

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

Van Rossum G, Drake F L. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

McKinney W. Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference. 2010;p.51–56. https://doi.org/10.25080/Majora-92bf1922-00a

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

Hunter JD. Matplotlib: A 2D graphics environment. Computing in Science & Engineering. 2007;9(3):90–95. https://doi.org/10.1109/MCSE.2007.55

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 2020;17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2

Waskom M, Botvinnik Olga Kane, Adel. mwaskom/seaborn: v0.8.1. Zenodo. 2017.

Hernandez-Miramontes JA, Hernandez-Villanueva JA, Pacifuentes-Orozco A, Méndez-Durán A. Ácidos carboxílicos en combinación con quelantes cálcicos de fósforo y bicarbonato de sodio para el tratamiento de la uremia e hiperfosfatemia en pacientes con ERC estadios 3, 4 y 5. Gac Med Bilbao. 2019;116:104-109.

Chen YR, Yang Y, Wang SC, Chiu PF, Chou WY, Lin CY, et al. Effectiveness of multidisciplinary care for chronic kidney disease in Taiwan: a 3-year prospective cohort study. Nephrol Dial Transplant. 2013;28(3):671-82. https://doi.org/10.1093/ndt/gfs469

Skorecki K, Chertow G, Marsden P, Taal M, You A. Bren- ner y Rector. El riñón. 10 ed. España: Elsevier; 2018.

Ranganathan N, Pechenyak B, Vyas U, Ranganathan P, DeLoach S; Falkner B, et al. Dose Escalation, Safety and Impact of a Strain-Specific Probiotic (RenadylTM) on Stages III and IV Chronic Kidney Disease Patients. J Nephrol Ther. 2013;3:141.

Walser M, Coulter AW, Dighe S, Crantz FR. The effect of keto-analogues of essential amino acids in severe chronic uremia. J Clin Invest. 1973;52(3):678-690. https://doi.org/10.1172/JCI107229

Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330(13):877-884. https://doi.org/10.1056/NEJM199403313301301

Hernandez-Miramontes J.A., Hernandez-Villanueva J.A. Mixture of Carboxylic Acids to Treat Patients with Renal Insufficiency. MX; PCT/MX2015/000144. 2016.

Available at: https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2016153331

Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409–12. https://doi.org/10.1074/jbc.R200006200

Pieniazek A, Bernasinska-Slomczewska J, Gwozdzinski L. Uremic Toxins and Their Relation with Oxidative Stress Induced in Patients with CKD. Int J Mol Sci. 2021 Jun 8;22(12):6196. https://doi.org/10.3390/ijms22126196

Gao X, Wu J, Dong Z, Hua C, Hu H, Mei C. A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone. Br J Nutr. 2010 Feb;103(4):608-16. https://doi.org/10.1017/S0007114509992108

Kobayashi M, Sugiyama H, Wang DH, Toda N, Maeshima Y, Yamasaki Y, et al. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int. 2005 Sep;68(3):1018-31. https://doi.org/10.1111/j.1523-1755.2005.00494.x

Phillips R, Hanchanale VS, Myatt A, Somani B, Nabi G, Biyani CS. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst Rev. 2015;(10):CD010057. https://doi.org/10.1002/14651858.CD010057.pub2

Fiaccadori E, Regolisti G, Cademartiri C, Cabassi A, Picetti E, Barbagallo M, et al. Efficacy and safety of a citrate-based protocol for sustained low-efficiency dialysis in AKI using standard dialysis equipment. Clin. J. Am. Soc. Nephrol. 2013;8 (10):1670–1678. https://doi.org/10.2215/CJN.00510113

Mariano F, Bergamo D, Gangemi EN, Hollo' Z, Stella M, Triolo G. Citrate anticoagulation for continuous renal replacement therapy in critically ill patients: Success and limits. Int. J. Nephrol. 2011;2011:748320. https://doi.org/10.4061/2011/748320

Bienholz A, Reis J, Sanli P, de Groot H, Petrat F, Guberina H, et al. Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury. BMC Nephrol. 2017;18(1):130. https://doi.org/10.1186/s12882-017-0546-1

Tiranathanagul K, Jearnsujitwimol O, Susantitaphong P, Kijkriengkraikul N, Leelahavanichkul A, Srisawat N, et al. Regional citrate anticoagulation reduces polymorphonuclear cell degranulation in critically ill patients treated with continuous venovenous hemofiltration. Ther Apher Dial 2011;15(6):556–564. https://doi.org/10.1111/j.1744-9987.2011.00996.x

Ou Y, Li S, Zhu X, Gui B, Yao G, Ma L, et al. Citrate Attenuates Adenine-Induced Chronic Renal Failure in Rats by Modulating the Th17/Treg Cell Balance. Inflammation. 2016;39(1):79–86. https://doi.org/10.1007/s10753-015-0225-y

Sasaki A, Koike N, Murakami T, Suzuki K. Dimethyl fumarate ameliorates cisplatin-induced renal tubulointerstitial lesions. J. Toxicol. Pathol. 2019;32(2):79–89. https://doi.org/10.1293/tox.2018-0049

Oh CJ, Kim JY, Choi YK, Kim HJ, Jeong JY, Bae KH, et al. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-?/Smad signaling. PLoS One. 2012;7(10):e45870. https://doi.org/10.1371/journal.pone.0045870

Valencia-Sanchez C, Carter JL. An evaluation of dimethyl fumarate for the treatment of relapsing remitting multiple sclerosis. Expert. Opin. Pharmacother. 2020;21(12):1399–1405. https://doi.org/10.1080/14656566.2020.1763304

Kchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39(1-3):84-92. https://doi.org/10.1159/000368940

Meng XM, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 2014 Sep;10(9):493-503. https://doi.org/10.1038/nrneph.2014.114

Rodríguez-Iturbe B, Pons H, Herrera-Acosta J, Johnson RJ. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int. 2001 May;59(5):1626-40. https://doi.org/10.1046/j.1523-1755.2001.0590051626.x

Deen PM, Robben JH. Succinate receptors in the kidney. J Am Soc Nephrol. 2011 Aug;22(8):1416-22. https://doi.org/10.1681/ASN.2010050481

Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest. 2008 Jul;118(7):2526-34. https://doi.org/10.1172/JCI33293

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Dimensions


PlumX


Downloads

Download data is not yet available.