Intermediarios del ciclo de Krebs en combinación con quelantes cálcicos de fósforo y bicarbonato de sodio aumentan la TFGe en pacientes con ERC en estadios 3b, 4 y 5: un estudio retrospectivo observacional
PDF (English)

Palabras clave

enfermedad renal crónica
CKD-EPI
creatinina
tasa de filtración glomerular estimada
intermediarios del ciclo de Krebs
nefroprotección

Cómo citar

1.
Hernández Miramontes JA, Méndez Durán A, Hernández Villanueva JA. Intermediarios del ciclo de Krebs en combinación con quelantes cálcicos de fósforo y bicarbonato de sodio aumentan la TFGe en pacientes con ERC en estadios 3b, 4 y 5: un estudio retrospectivo observacional. Rev. Colomb. Nefrol. [Internet]. 29 de mayo de 2024 [citado 2 de julio de 2024];11(2). Disponible en: https://revistanefrologia.org/index.php/rcn/article/view/778

Resumen

Introducción: en la actualidad, el tratamiento de la enfermedad renal crónica (ERC) consiste en tratar la enfermedad primaria y sus consecuencias, así como mejorar los marcadores bioquímicos alterados. Sin embargo, la nefroprotección es clave para retrasar la progresión de la enfermedad.

Objetivo: este estudio evalúa el efecto del suministro de intermediarios del ciclo de Krebs en combinación con carbonato de calcio, lactato de calcio y bicarbonato de sodio en pacientes con ERC.

Métodos: se realizó un estudio observacional retrospectivo en clínicas de nefrología y medicina interna de México. Se incluyeron pacientes mayores de 18 años con enfermedad renal crónica (ERC) estadios 3b, 4 y 5 que no estaban en tratamiento sustitutivo renal (TSR) y  que han sido tratados con terapia basada en intermediarios del ciclo de Krebs. 

Resultados: el estudio incluyó un total de 55 pacientes con ERC. Los resultados mostraron un aumento del TFGe de una media basal de 16,73 ± 1.374 mL/min a una media final de 19,18 ± 1.516 mL/min y una disminución de los valores de creatinina de una media basal de 4,26 ± 2,44 mg/dL a una media final de 3,77 ± 2,23 mg/dL, estos cambios tuvieron una significación estadística p<0,05.

Conclusiones: los beneficios observados de la mezcla evaluada incluyen: 1) Aumento de la TFGe, 2) Disminución de la creatinina sérica, 3) Disminución de la urea sérica, 4) Disminución del fósforo sérico, 5) Aumento de la hemoglobina sérica y 6) Mantenimiento de los niveles de albúmina dentro de rangos normales. La terapia adyuvante con la combinación de ATC podría ser una herramienta útil como nueva opción terapéutica en pacientes con ERC.

https://doi.org/10.22265/acnef.11.2.778
PDF (English)

Citas

Hsu HT, Chiang YC, Lai YH, Lin LY, Hsieh HF, Chen JL. Effectiveness of multidisciplinary care for chronic kidney diseases: A Systematic Review. Worldviews Evid Based Nurs. 2021;18(1):33-41. https://doi.org/10.1111/wvn.12483

Khan Z, Pandey M. Role of kidney biomarkers of chronic kidney disease: An update. Saudi J Biol Sci. 2014;21(4):294–299. https://doi.org/10.1016/j.sjbs.2014.07.003

Stompór T, Adamczak M, Kurnatowska I, Naumnik B, Nowicki M, Tylicki L, et al. Pharmacological Nephroprotection in Non-Diabetic Chronic Kidney Disease-Clinical Practice Position Statement of the Polish Society of Nephrology. J Clin Med. 2023;12(16):5184. https://doi.org/10.3390/jcm12165184

de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075-84. https://doi.org/10.1681/ASN.2008111205

Adamczak M, Surma S. Metabolic Acidosis in Patients with CKD: Epidemiology, Pathogenesis, and Treatment. Kidney Dis (Basel). 2021;7(6):452-467. https://doi.org/10.1159/000516371

Jiménez-Uribe AP, Hernández-Cruz EY, Ramírez-Magaña KJ, Pedraza-Chaverri J. Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules. 2021;11(9):1259. https://doi.org/10.3390/biom11091259

Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease. J Am Soc Nephrol. 2013;24(11):1901–12. https://doi.org/10.1681/ASN.2013020126

Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14(5):291–312. https://doi.org/10.1038/nrneph.2018.9

Hallan S, Afkarian M, Zelnick LR, Kestenbaum B, Sharma S, Saito R, et al. Metabolomics and Gene Expression Analysis Reveal Down-regulation of the Citric Acid (TCA) Cycle in Non-diabetic CKD Patients. EbioMedicine. 2017;26:68-77. https://doi.org/10.1016/j.ebiom.2017.10.027

Shah AP, Kalantar-Zadeh K, Kopple JD. Is there a role for ketoacid supplements in the management of CKD? Am J Kidney Dis. 2015;65(5):659-73. https://doi.org/10.1053/j.ajkd.2014.09.029

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

Van Rossum G, Drake F L. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

McKinney W. Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference. 2010;p.51–56. https://doi.org/10.25080/Majora-92bf1922-00a

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

Hunter JD. Matplotlib: A 2D graphics environment. Computing in Science & Engineering. 2007;9(3):90–95. https://doi.org/10.1109/MCSE.2007.55

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 2020;17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2

Waskom M, Botvinnik Olga Kane, Adel. mwaskom/seaborn: v0.8.1. Zenodo. 2017.

Hernandez-Miramontes JA, Hernandez-Villanueva JA, Pacifuentes-Orozco A, Méndez-Durán A. Ácidos carboxílicos en combinación con quelantes cálcicos de fósforo y bicarbonato de sodio para el tratamiento de la uremia e hiperfosfatemia en pacientes con ERC estadios 3, 4 y 5. Gac Med Bilbao. 2019;116:104-109.

Chen YR, Yang Y, Wang SC, Chiu PF, Chou WY, Lin CY, et al. Effectiveness of multidisciplinary care for chronic kidney disease in Taiwan: a 3-year prospective cohort study. Nephrol Dial Transplant. 2013;28(3):671-82. https://doi.org/10.1093/ndt/gfs469

Skorecki K, Chertow G, Marsden P, Taal M, You A. Bren- ner y Rector. El riñón. 10 ed. España: Elsevier; 2018.

Ranganathan N, Pechenyak B, Vyas U, Ranganathan P, DeLoach S; Falkner B, et al. Dose Escalation, Safety and Impact of a Strain-Specific Probiotic (RenadylTM) on Stages III and IV Chronic Kidney Disease Patients. J Nephrol Ther. 2013;3:141.

Walser M, Coulter AW, Dighe S, Crantz FR. The effect of keto-analogues of essential amino acids in severe chronic uremia. J Clin Invest. 1973;52(3):678-690. https://doi.org/10.1172/JCI107229

Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330(13):877-884. https://doi.org/10.1056/NEJM199403313301301

Hernandez-Miramontes J.A., Hernandez-Villanueva J.A. Mixture of Carboxylic Acids to Treat Patients with Renal Insufficiency. MX; PCT/MX2015/000144. 2016.

Available at: https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2016153331

Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409–12. https://doi.org/10.1074/jbc.R200006200

Pieniazek A, Bernasinska-Slomczewska J, Gwozdzinski L. Uremic Toxins and Their Relation with Oxidative Stress Induced in Patients with CKD. Int J Mol Sci. 2021 Jun 8;22(12):6196. https://doi.org/10.3390/ijms22126196

Gao X, Wu J, Dong Z, Hua C, Hu H, Mei C. A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone. Br J Nutr. 2010 Feb;103(4):608-16. https://doi.org/10.1017/S0007114509992108

Kobayashi M, Sugiyama H, Wang DH, Toda N, Maeshima Y, Yamasaki Y, et al. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int. 2005 Sep;68(3):1018-31. https://doi.org/10.1111/j.1523-1755.2005.00494.x

Phillips R, Hanchanale VS, Myatt A, Somani B, Nabi G, Biyani CS. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst Rev. 2015;(10):CD010057. https://doi.org/10.1002/14651858.CD010057.pub2

Fiaccadori E, Regolisti G, Cademartiri C, Cabassi A, Picetti E, Barbagallo M, et al. Efficacy and safety of a citrate-based protocol for sustained low-efficiency dialysis in AKI using standard dialysis equipment. Clin. J. Am. Soc. Nephrol. 2013;8 (10):1670–1678. https://doi.org/10.2215/CJN.00510113

Mariano F, Bergamo D, Gangemi EN, Hollo' Z, Stella M, Triolo G. Citrate anticoagulation for continuous renal replacement therapy in critically ill patients: Success and limits. Int. J. Nephrol. 2011;2011:748320. https://doi.org/10.4061/2011/748320

Bienholz A, Reis J, Sanli P, de Groot H, Petrat F, Guberina H, et al. Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury. BMC Nephrol. 2017;18(1):130. https://doi.org/10.1186/s12882-017-0546-1

Tiranathanagul K, Jearnsujitwimol O, Susantitaphong P, Kijkriengkraikul N, Leelahavanichkul A, Srisawat N, et al. Regional citrate anticoagulation reduces polymorphonuclear cell degranulation in critically ill patients treated with continuous venovenous hemofiltration. Ther Apher Dial 2011;15(6):556–564. https://doi.org/10.1111/j.1744-9987.2011.00996.x

Ou Y, Li S, Zhu X, Gui B, Yao G, Ma L, et al. Citrate Attenuates Adenine-Induced Chronic Renal Failure in Rats by Modulating the Th17/Treg Cell Balance. Inflammation. 2016;39(1):79–86. https://doi.org/10.1007/s10753-015-0225-y

Sasaki A, Koike N, Murakami T, Suzuki K. Dimethyl fumarate ameliorates cisplatin-induced renal tubulointerstitial lesions. J. Toxicol. Pathol. 2019;32(2):79–89. https://doi.org/10.1293/tox.2018-0049

Oh CJ, Kim JY, Choi YK, Kim HJ, Jeong JY, Bae KH, et al. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-?/Smad signaling. PLoS One. 2012;7(10):e45870. https://doi.org/10.1371/journal.pone.0045870

Valencia-Sanchez C, Carter JL. An evaluation of dimethyl fumarate for the treatment of relapsing remitting multiple sclerosis. Expert. Opin. Pharmacother. 2020;21(12):1399–1405. https://doi.org/10.1080/14656566.2020.1763304

Kchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39(1-3):84-92. https://doi.org/10.1159/000368940

Meng XM, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 2014 Sep;10(9):493-503. https://doi.org/10.1038/nrneph.2014.114

Rodríguez-Iturbe B, Pons H, Herrera-Acosta J, Johnson RJ. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int. 2001 May;59(5):1626-40. https://doi.org/10.1046/j.1523-1755.2001.0590051626.x

Deen PM, Robben JH. Succinate receptors in the kidney. J Am Soc Nephrol. 2011 Aug;22(8):1416-22. https://doi.org/10.1681/ASN.2010050481

Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest. 2008 Jul;118(7):2526-34. https://doi.org/10.1172/JCI33293

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.