El riñón en cuidado intensivo durante la pandemia por SARS-COV-2

Palabras clave: COVID-19, Lesión renal aguda, SARS-CoV-2, unidad de cuidados intensivos, terapias de reemplazo renal, COVID-19, Acute kidney injury, SARS-CoV-2, intensive care unit, renal replacement therapies.

Resumen

La emergencia actual por SARS-CoV-2 se ha esparcido rápidamente por todo el mundo demostrando el potencial epidémico de los coronavirus. La preocupación a nivel mundial se ha centrado en la necesidad de unidades de cuidado intensivo y medidas de soporte como la ventilación mecánica. La lesión renal aguda en este contexto es una complicación asociada a una alta morbilidad y mortalidad que requiere una atención rápida y oportuna, por lo que el objetivo de este trabajo es revisar la literatura sobre el COVID-19 y sus manifestaciones renales en la unidad de cuidados intensivos.

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. World Health Organization. Coronavirus disease (COVID-2019) situation reports. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.
2. Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy: Early Experience and Forecast During an Emergency Response. JAMA. 2020 Mar 13. doi:10.1001/jama.2020.4031
3. World Health Organization. Severe Acute Respiratory Syndrome (SARS). Disponible en: https://www.who.int/csr/sars/en/.
4. Manocha S, Walley KR, Russel JA. Severe acute respiratory distress syndrome (SARS): A critical care perspective. Crit Care Med. 2003;31(11):2684–92.
5. Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67(2):698–705.
6. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). Disponible en: http://www.who.int/emergencies/ mers-cov/en/.
7. Arabi YM, Arifi AA, Balkhy HH, Najm H, Aldawood AS, Ghabashi A, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014;160(6):389–97.
8. Al-Dorzi HM, Aldawood AS, Khan R, Baharoon S, Alchin JD, Matroud AA, et al. The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: an observational study. Ann Intensive Care. 2016;6(1):101.
9. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607–25.
10. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.
11. Metnitz PG, Krenn CG, Steltzer H, Lang T, Ploder J, Lenz K et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30(9):2051–8.
12. Nisula S, Kaukonen KM, Vaara ST, Korhonen AM, Poukkanen M, Karlsson S et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39(3):420–8.
13. Ronco C, Kellum JA, Bellomo R RZ. Ronco C, Kellum JA, Bellomo R, Ricci Z. Critical care Nephrology. Third edition. Philadelphia: Elsevier Inc; 2018.
14. Gutiérrez Parra AR, Sánchez Hernández LM, Prada Vanegas EJ, Oliveros RM, Rodríguez DE RH. Factores asociados a la insuficiencia renal aguda en pacientes hospitalizados en la unidad de cuidados intensivos de la Clínica Ibagué, 2016-2017. Rev Colomb Nefrol. 2019;6(2):112–21.
15. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020. doi:10.1056/NEJMoa2002032.
16. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan , China. Lancet. 2020;395(10223):497–506.
17. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020. doi: 10.1001/jama.2020.1585.
18. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan , China : a single-centered , retrospective , observational study. Lancet Respir Med. 2020;pii:S2213-2600(20):30079–5.
19. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020. doi:10.1001/jama.2020.5394.
20. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020. doi: 10.1001/jama.2020.4326.
21. Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK et al. Covid-19 in Critically Ill Patients in the Seattle Region — Case Series. N Engl J Med. 2020. doi: %0A10.1056/NEJMoa2004500.
22. Sun P, Lu X, Xu C, Sun W PB. Understanding of COVID-19 based on current evidence. J Med Virol. 2020. doi: 10.1002/jmv.25722
23. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44.
24. Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.
25. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus : implications for virus origins and receptor binding. 2020;395(10224):565–74.
26. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus ( 2019-nCoV ) Originating in China. Cell Host Microbe. 2020;27(3):325–8.
27. Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biol. 2020;30(7):1346–51.
28. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ et al. Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. bioRxiv. 2020.02.17.951335; doi: 10.1101/2020.02.17.951335
29. Lam TT, Shum MH, Zhu H, Tong Y. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv. 2020. 02.13.945485; doi: 10.1038/s41586-020-2169-0
30. Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020. doi: 10.1002/jmv.25731.
31. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.
32. McIntosh K. Coronavirus disease 2019 (COVID-19). UpToDate. 2020;March.
33. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020. doi: 10.1056/NEJMc2004973.
34. Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020;pii:S0016-5085(20):30281–X.
35. Wang S, Guo L, Chen L, Liu W, Cao Y, Zhang J et al. A case report of neonatal COVID-19 infection in China. Clin Infect Dis. 2020; doi: 10.1093/cid/ciaa225.
36. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020; Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
37. Whittle, JS, Pavlov, I, Sacchetti, AD, Atwood, C, Rosenberg M. Respiratory support for adult patients with COVID‐19. JACEP Open. 2020;1–7. doi.org/10.1002/emp2.12071
38. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. 2020;382(10):970–1.
39. Zhang J, Tian S, Lou J CY. Familial cluster of COVID-19 infection from an asymptomatic. Crit Care. 2020;24(1):119.
40. Brunton LL, Hilal-Dandan R KB. Goodman and Gilman the pharmacological basis of therapeutics. 13th ed. United States: McGraw-Hill Education;2018.
41. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;pii:S0092-8674(20):30229–4.
42. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT VD. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;pii:S0092-8674(20):30262–2.
43. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G van GH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–7.
44. Pan X, Xu D, Zhang H, Zhou W, Wang L, Cui X. Identification of a potential mechanism of acute kidney injury during the COVID ‑ 19 outbreak : a study based on single ‑ cell transcriptome analysis. Intensive Care Med. 2020. doi:%0A10.1007/s00134-020-06026-1.
45. Zou X, Chen K, Zou J, Han P, Hao J. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020. doi:%0A10.1007/s11684-020-0754-0.
46. Yang X, Deng W, Tong Z, Liu Y, Zhang L, Zhu H, et al. Mice Transgenic for Human Angiotensin-converting Enzyme 2 Provide a Model for SARS Coronavirus Infection. Comp Med. 2007;57(5):450–9.
47. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–6.
48. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation. 2005;111(20):2605–10.
49. South AM, Tomlinson L, Edmonston D, Hiremath S SM. Controversies of renin–angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol. 2020. doi.org/10.1038/s41581-020-0279-4
50. Talreja H, Tan J, Dawes M, Supershad S, Rabindranath K, Fisher J, et al. A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019). N Z Med J. 2020;133(1512):85–7.
51. Yang XH, Sun RH CD. Diagnosis and treatment of COVID-19: acute kidney injury cannot be ignored. Zhonghua Yi Xue Za Zhi. 2020;100(0):E017.
52. Li Z, Wu M, Yao J, Guo J, Liao X, Song S et al. Caution on Kidney Dysfunctions of COVID-19 Patients. medRxiv. 2020.02.08.20021212; doi.org/10.1101/2020.02.08.20021212
53. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;pii:S0085-2538(20):30255–6.
54. Shirley Iglesias Pertuz,Gustavo Aroca-Martinez, María Velez-Verbel, Andrés Cadena Osorio, Andrés Cadena-Bonfanti, et al. Reporte de 4 casos COVID-19 hospitalizados en unidad de cuidados intensivos en una institución hospitalaria en Barranquilla, Colombia. Rev Colomb Nefrol. 2020;7(Supl 2).
55. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58–60.
56. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020. doi: 10.1056/NEJMoa2001282.
57. American Society of Nephrology. Recommendations on the care of hospitalized patients with covid-19 and kidney failure requiring renal replacement therapy. March 21, 2020.
58. Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, et al. Management of patients on dialysis and with kidney transplant during covid-19 coronavirus infection. 2020.
59. Ronco C, Navalesi P, Vincent JL. Coronavirus epidemic : preparing for extracorporeal organ support in intensive care. Lancet Respir Med. 2020;8(3):240–1.
60. Branch of Nephrology, Chinese Medical Association. Expert consensus on the Application of Special Blood purification Technology in severe COVID-19. 2020.
61. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020. doi.org/10.1038/s41581-020-0284-7
62. Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, et al. Effect of Targeted Polymyxin B Hemoperfusion. 2018;320(14):1455–63.
63. Iba T, Klein DJ. The wind changed direction and the big river still flows : from EUPHRATES to TIGRIS activity assay. j intensive care. 2019;7(31).
64. Houschyar KS, Pyles MN, Rein S, Nietzschmann I, Duscher D, Maan ZN, et al. Continuous hemoadsorption with a cytokine adsorber during sepsis - a review of the literature. Int J Artif Organs. 2017;40(5):205–11.
65. Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel treatment approach to the novel coronavirus : an argument for the use of therapeutic plasma exchange for fulminant. Crit Care. 2020;24(1):128.
66. Ma J, Xia P, Li X. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clin Inmmunol. 2020;214:108408.
67. Cytokine Adsorption in Severe COVID-19 Pneumonia Requiring Extracorporeal Membrane Oxygenation (CYCOV). 2020;NCT04324528.
Publicado
2020-06-19
Cómo citar
1.
Santiago DR, Ballesteros DA, Pulido Saenz JA. El riñón en cuidado intensivo durante la pandemia por SARS-COV-2. Rev. Colomb. Nefrol. [Internet]. 19 de junio de 2020 [citado 5 de agosto de 2020];7(Supl.2). Disponible en: https://revistanefrologia.org/index.php/rcn/article/view/432
Sección
Artículo de revisión