El riñón en cuidado intensivo durante la pandemia por SARS-COV-2

  • Daniel Ricardo Santiago Ausecha Semillero de Investigación Posteris Lumen, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia. https://orcid.org/0000-0001-8917-8566
  • David Ballesteros Unidad de Nefrología, Hospital Universitario San José de Popayán Empresa Social del Estado, Popayán, Colombia. Departamento de Medicina Interna, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia https://orcid.org/0000-0003-1603-8823
  • Jorge Armando Pulido Saenz Asociación Colombiana Nefrología e Hipertensión Arterial, Bogotá D.C., Colombia. Servicio de Nefrología, RTS Agencia Clínica Chía, Chía, Colombia. https://orcid.org/0000-0002-0262-3506
Palabras clave: COVID-19, lesión renal aguda, SARS-CoV-2, unidad de cuidados intensivos, terapia de reemplazo renal.

Resumen

Introducción: la emergencia actual por SARS-CoV-2 se ha esparcido rápidamente por todo el mundo, lo cual ha demostrado el potencial epidémico de los coronavirus. La preocupación a nivel mundial se ha centrado en la necesidad de contar con unidades de cuidado intensivo (UCI) y medidas de soporte como la ventilación mecánica. La lesión renal aguda en este contexto es una complicación asociada a una alta morbimortalidad que requiere una atención rápida y oportuna.

Objetivo: revisar la literatura sobre el COVID-19 y sus manifestaciones renales en las UCI.

Materiales y métodos: se realizó una búsqueda de la literatura en la base de datos de PubMed con las palabras claves “Intensive Care Units “Critial care” “COVID-19” “severe acute respiratory syndrome coronavirus 2” “SARS-CoV-2” “2019 novel coronavirus” “coronavirus disease 2019” “acute kidney injury” y “Nephrologists.

Resultados: se encontraron 74 publicaciones, 53 relacionadas directamente con la infección por coronavirus y 21 complementarias en cuanto a lesión renal aguda.

Conclusión: el riñón está involucrado en la fisiopatología de la COVID-19 y su disfunción se ha asociado con resultados fatales, por lo que su vigilancia y tratamiento se debe priorizar desde el ingreso del paciente para mejorar su pronóstico.

Descargas

La descarga de datos todavía no está disponible.

Referencias

World Health Organization (WHO). Coronavirus disease (COVID-2019) situation reports. Geneva: WHO; 2020 [citado Jul 19 2020]. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/

Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy: Early Experience and Forecast During an Emergency Response. JAMA. 2020. http://dx.doi.org/10.1001/jama.2020.4031.

World Health Organization (WHO). Severe Acute Respiratory Syndrome (SARS). Geneva: WHO; 2020 [citado Jul 18 2020]. Disponible en: https://www.who.int/csr/sars/en/.

Manocha S, Walley KR, Russel JA. Severe acute respiratory distress syndrome (SARS): A critical care perspective. Crit Care Med. 2003;31(11):2684-92. http://dx.doi.org/10.1097/01.CCM.0000091929.51288.5F

Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67(2):698-705. http://dx.doi.org/10.1111/j.1523-1755.2005.67130.x

World Health Organization (WHO). Middle East respiratory syndrome coronavirus (MERS-CoV). Geneva: WHO; 2020 [citado Jul 18 2020]. Disponible en: http://www.who.int/emergencies/mers-cov/en/

Arabi YM, Arifi AA, Balkhy HH, Najm H, Aldawood AS, Ghabashi A, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014;160(6):389-97. http://dx.doi.org/10.7326/M13-2486

Al-Dorzi HM, Aldawood AS, Khan R, Baharoon S, Alchin JD, Matroud AA, et al. The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: an observational study. Ann Intensive Care. 2016;6(1):101. http://dx.doi.org/10.1186/s13613-016-0203-z

Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607-25. http://dx.doi.org/10.1038

/s41581-018-0052-0

Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813-8. http://dx.doi.org/10.1001/jama.294.7.813

Metnitz PGH, Krenn CG, Steltzer H, Lang T, Ploder J, Lenz K, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30(9):2051-8. http://dx.doi.org/10.1097/00003246-200209000-00016

Hoste EAJ, Bagshaw SM, Bellomo R, Celyy CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411-23. http://dx.doi.org/10.1007/s00134-015-3934-7

Ronco C, Bellomo R, Kellum JA, Ricci Z. Critical care Nephrology. 3rd edition. Philadelphia: Elsevier Inc; 2018.

Gutiérrez-Parra AR, Sánchez-Hernández LM, Prada-Vanegas EJ, Oliveros MR, Rodríguez DE, Grisales-Romero H. Factores asociados a la insuficiencia renal aguda en pacientes hospitalizados en la unidad de cuidados intensivos de la Clínica Ibagué, 2016-2017. Rev. Colomb. Nefrol. 2019;6(2):112-21. http://dx.doi.org/10.22265/acnef.6.2.340

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020. http://dx.doi.org/10.1056/NEJMoa2002032

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. http://dx.doi.org/10.1016/S0140-6736(20)30183-5.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus- Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. http://dx.doi.org/10.1001/jama.2020.1585

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):P475-81. https://doi.org/10.1016/ S2213-2600(20)30079-5

Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-81. https://doi.org/10.1001/ jama.2020.5394

Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020:323(16):1612-4. https://doi.org/10.1001/jama.2020.4326

Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med. 2020;382(21):2012-22. https://doi.org/10.1056/NEJMoa2004500

Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID-19 based on current evidence. J Med Virol. 2020;92(6):548-551. https://doi.org/10.1002/jmv.25722

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome- related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. https://doi.org/10.1038/ s41564-020-0695-z

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. https://doi.org/10.1038/s41586-020-2012-7

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus?: implications for virus origins and receptor binding. 2020;395(10224):565-74. https://doi.org/10.1016/S0140-6736(20)30251-8

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325-8. https://doi.org/10.1016/j.chom.2020.02.001

Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biol. 2020;30(7):1346-51.e2. https://doi.org/10.1016/j.cub.2020.03.022

Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. bioRxiv. 2020. https://doi.org/10.1101/2020.02.17.951335

Lam TT, Shum MH, Zhu H, Tong Y, Ni X, Liao Y, et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv. 2020. https://doi.org/10.1038/s41586-020-2169-0.

Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020;92(6):602-11. https://doi.org/10.1002/jmv.25731. 31. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. https://doi.org/10.1038/s41586-020-2008-3

McIntosh K. Coronavirus disease 2019 (COVID-19): Epidemiology, virology and prevention. UpToDate. 2020 [citado Jul 18 2020]. Disponible en: https://www.uptodate.com/

van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS- CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-7. https://doi.org/10.1056/NEJMc2004973

Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020;158(6):1518-9. https://doi.org/10.1053/j.gastro.2020.02.054

Wang S, Guo L, Chen L, Liu W, Cao Y, Zhang J, et al. A case report of neonatal COVID-19 infection in China. Clin Infect Dis. 2020;ciaa225 https://doi.org/10.1093/cid/ciaa225

World Health Organization (WHO). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Geneva: WHO; 2020 [citado Jul 14 2020]. Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on- covid-19-final-report.pdf.

Whittle JS, Pavlov I, Sacchetti AD, Atwood C, Rosenberg MS. Respiratory support for adult patients with COVID?19. J Am Coll Emerg Physicians Open. 2020;1(2). https://doi.org/10.1002/emp2.12071

Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. 2020;382(10):970-1. https://doi.org/10.1056/NEJMc2001468

Zhang J, Tian S, Lou J, Chen Y. Familial cluster of COVID-19 infection from an asymptomatic. Crit Care. 2020;24(1):119. https://doi.org/10.1186/s13054-020-2817-7

Brunton LL, Hilal-Dandan R, Knollmann BC. Goodman and Gilman’s: the pharmacological basis of therapeutics. 13th ed. McGraw-Hill Education; 2018.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80.e8. https://doi.org/10.1016/ j.cell.2020.02.052

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veeler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-92.e6. https://doi.org/10.1016/j.cell.2020.02.058

Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7. https://doi.org/10.1002/path.1570

Pan X, Xu D, Zhang H, Zhou W, Wang L, Cui X. Identification of a potential mechanism of acute kidney injury during the COVID?19 outbreak: a study based on single? cell transcriptome analysis. Intensive Care Med. 2020;46(6):1114-6. https://doi.org/10.1007/ s00134-020-06026-1

Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. https://doi.org/10.1007/s11684-020-0754-0

Yang X, Deng W, Tong Z, Liu Y, Zhang L, Zhu H, et al. Mice Transgenic for Human Angiotensin-converting Enzyme 2 Provide a Model for SARS Coronavirus Infection. Comp Med. 2007;57(5):450-9

Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-6. https://doi.org/10.1038/nature03712

Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation. 2005;111(20):2605-10. https://doi.org/10.1161/CIRCULATIONAHA.104.510461

South AM, Tomlinson L, Edmonston D, Hiremath S, Spark MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol. 2020;16(6):305-7. https://doi.org/10.1038/s41581-020-0279-4

Talreja H, Tan J, Dawes M, Supershad S, Rabindranath K, Fisher J, et al. A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019). N Z Med J. 2020;133(1512):85-7

Yang XH, Sun RH, Chen DC. [Diagnosis and treatment of COVID-19: acute kidney injury cannot be ignored]. Zhonghua Yi Xue Za Zhi. 2020;100(16):1205-8. https://doi.org/10.3760/cma.j.cn112137-20200229-00520

Li Z, Wu M, Yao J, Guo J, Liao X, Song S, et al. Caution on Kidney Dysfunctions of COVID-19 Patients. medRxiv. 2020. https://doi.org/10.1101/2020.02.08.20021212

Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-38. https://doi.org/10.1016/j.kint.2020.03.005

Iglesias-Pertuz S, Aroca-Martínez G, María Velez-Verbel, Andrés Cadena Osorio, Andrés Cadena-Bonfanti, et al. Reporte de 4 casos COVID-19 hospitalizados en unidad de cuidados intensivos en una institución hospitalaria en Barranquilla, Colombia. Rev. Colomb. Nefrol. 2020;7(Suppl 2). 55. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58-60. https://doi.org/10.5582/ddt.2020.01012

NephJC. COVID-19 and AKI FAQs. Detroit: Joel Topf & Swapnil Hiremath; 2014. [citado Jul 18 2020]. Disponible en: http://www.nephjc.com/news/covidaki.

Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-99. https://doi.org/10.1056/NEJMoa2001282.

American Society of Nephrology (ASN). Recommendations on the care of hospitalized patients with covid-19 and kidney failure requiring renal replacement therapy. ASN; 2020.

Brescia Renal Covid Task Force. Management of patients on dialysis and with kidney trasplant during COVID-19 coronavirus infection. 2020 [citado Jul 18 2020]. Disponible en: https://www.era-edta.org/en/wp-content/uploads/2020/03/ COVID_guidelines_finale_eng-GB.pdf

Ronco C, Navalesi P, Vincent JL. Coronavirus epidemic: preparing for extracorporeal organ support in intensive care. Lancet Respir Med. 2020;8(3):240-1. https://doi.org/10.1016/S2213-2600(20)30060-6

Chinese Medical Association. Expert consensus on the Application of Special Blood purification Technology in severe COVID-19. 2020. 2020 [citado Jul 14 2020]. Disponible en: https://www.era-edta.org/en/wp-content uploads/2020/03/English-version-Expert- consensus-on-the-Application-of-Special-Blood-purification-Technology-in-severe-COVID-19-pneumonia.pdf

Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16(6):308-10. https://doi.org/10.1038/s41581-020-0284-7

Rimmelé T, Kellum JA. High Volume Hemofiltration in the Intensive Care Unit: a blood purification therapy. Anesthesiology. 2.012;116(6):1377-87. https://doi.org/10.1097/ALN.0b013e318256f0c0

Honore PM, Hoste E, Molnár Z, Jacobs R, Joannes-Boyau O, Malbrain MLNG, et al. Cytokine removal in Human Septic shock: Where are we and where are we going? Ann Intensive Care, 2019;9:56. https://doi.org/10.1186/s13613-019-0530-y

Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA. 2018;320(14):1455-63. https://doi.org/10.1001/jama.2018.14618

Iba T, Klein DJ. The wind changed direction and the big river still flows?: from EUPHRATES to TIGRIS. J Intensive Care. 2019;7:31. https://doi.org/10.1186/s40560-019-0386-0.

Houschyar KS, Pyles MN, Rein S, Nietzschmann I, Duscher D, Maan ZN, et al. Continuous hemoadsorption with a cytokine adsorber during sepsis - a review of the literature. Int J Artif Organs. 2017;40(5):205-11. https://doi.org/10.5301/ijao.5000591.

Dastan F, Saffaei A, Mortazavi SM, Jamaati H, Adnani N, Roudi SS, et al. Continuous renal replacement therapy (CRRT) with disposable hemoperfusion cartridge: A promising option for severe COVID-19. J Glob Antimicrob Resist. 2020;21:340-1. https://doi.org/10.1016/ j.jgar.2020.04.024

Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel treatment approach to the novel coronavirus?: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care. 2020;24(1):128. https://doi.org/10.1186/s13054-020-2836-4

Honore PM, Mugisha A, Kugener L, Redant S, Attou R, Gallerani A, et al. Therapeutic plasma exchange as a routine therapy in septic shock and as an experimental treatment for Covid-19: We are not sure. Crit Care. 2020;24(1):226. https://doi.org/10.1186/s13054-020-02943-1

Ma J, Xia P, Zhou Y, Liu Z, Zhou X, Wnag J, et al. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clin Inmmunol. 2020;214:108408. https://doi.org/10.1016/j.clim.2020.108408

Adeli SH, Asghari A, Tabarraii R, Shajari R, Afshari S, Kalhor, et al. Therapeutic plasma exchange as a rescue therapy in patients with coronavirus disease 2019: a case series. Pol Arch Intern Med. 020;130(5):455-8. https://doi.org/10.20452/pamw.15340

Lin JH. Application of plasma exchange in association with higher dose CVVH in citokine storm complicating Covid-19. J Formos Med Assoc. 2020;119(6):1116-8. https://doi.org/10.1016/j.jfma.2020.04.023

Supady A. Cytokine Adsorption in Severe COVID-19 Pneumonia Requiring Extracorporeal Membrane Oxygenation (CYCOV). ClinicalTrials.gov; 2020.

Publicado
2020-06-19
Cómo citar
1.
Santiago Ausecha DR, Ballesteros D, Pulido Saenz JA. El riñón en cuidado intensivo durante la pandemia por SARS-COV-2. Rev. Colomb. Nefrol. [Internet]. 19 de junio de 2020 [citado 26 de noviembre de 2020];7(Supl.2). Disponible en: https://revistanefrologia.org/index.php/rcn/article/view/432