El filtrado glomerular estimado como predictor de riesgo cardiovascular
PDF

Palabras clave

filtrado glomerular
enfermedad renal crónica
enfermedad cardiovascular
creatinina
inulina
cistatina C

Cómo citar

1.
Valtuille R. El filtrado glomerular estimado como predictor de riesgo cardiovascular. Rev. Colomb. Nefrol. [Internet]. 16 de mayo de 2025 [citado 20 de septiembre de 2025];12(2). Disponible en: https://revistanefrologia.org/index.php/rcn/article/view/943

Resumen

Contexto: la enfermedad renal crónica (ERC) representa un desafío global de salud, con una creciente prevalencia impulsada por factores como hipertensión, diabetes y obesidad. Su relación con la enfermedad cardiovascular (ECV) es estrecha, ya que la disminución del filtrado glomerular (FG) aumenta el riesgo de eventos cardiovasculares. En este marco, la estimación del FG se ha convertido en una herramienta clave para evaluar la progresión de la ERC y su impacto en la ECV.

Objetivo: el estudio analiza el FG estimado (FGe) como predictor de riesgo cardiovascular en pacientes con ERC, explorando diversas fórmulas de estimación, su precisión y sus implicaciones clínicas. También examina situaciones especiales como la hiperfiltración glomerular (HFG) y el síndrome de hipo-filtración selectiva (SHS), recientemente descritas y relacionadas con la ECV.

Metodología: se realizó una revisión de la literatura en bases de datos científicas como PubMed, Ovid-MEDLINE, Web of Science y EMBASE, abarcando estudios publicados entre enero de 2000 y abril de 2024. Se analizaron fórmulas de estimación del FG basadas en creatinina (Cr) y cistatina C (Cis C), considerando su aplicabilidad clínica y limitaciones.

Resultados: se destaca que el FGe basado en Cr es ampliamente utilizado por su accesibilidad, pero tiene limitaciones en precisión. La inclusión de Cis C mejora la predicción de riesgo cardiovascular y progresión de la ERC. Además, valores elevados de FG pueden indicar sobreestimación y riesgo cardiovascular. El SHS, asociado con inflamación y ECV, subraya la necesidad de una evaluación más precisa del FG.

Conclusiones: el diagnóstico temprano de la ERC es clave para reducir su progresión y el impacto en la ECV. Las fórmulas de FGe han mejorado su precisión, pero aún presentan variabilidad significativa. La integración de Cis C y el reconocimiento de nuevas entidades como el SHS y la HFG pueden optimizar la predicción del riesgo cardiovascular en pacientes con ERC.

https://doi.org/10.22265/acnef.12.2.943
PDF

Citas

Thomas B, Wulf S, Bikbov B, Perico N, Cortinovis M, Courville de Vaccaro K, et al. Maintenance dialysis throughout the world in years 1990 and 2010. J Am Soc Nephrol. 2015;26(11):2621-33. https://doi.org/10.1681/asn.2014101017

Burgos-Calderón R, Depine SÁ, Aroca-Martínez G. Population kidney health. A new paradigm for chronic kidney disease management. Int J Environ Res Public Health. 2021;18(13):6786. https://doi.org/10.3390/ijerph18136786

Chan CT, Blankestijn PJ, Dember LM, Gallieni M, Harris DC, Lok CE, et al. Dialysis initiation, modality choice, access, and prescription: conclusions from a kidney disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 2019;96(1):37-47. https://doi.org/10.1016/j.kint.2019.01.017

GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709-33. https://doi.org/10.1016/S0140-6736(20)30045-3

AIRG-E, EKPF, ALCER, FRIAT, REDINREN, RICORS2040, et al. CKD: The burden of disease invisible to research funders. Nefrología. 2022;42(1):65-84. https://doi.org/10.1016/j.nefro.2021.09.004

Yamagata K. Trends in the incidence of kidney replacement therapy: comparisons of ERA, USRDS and Japan registries. Nephrol Dial Transplant. 2023;38(4):797-9. https://doi.org/10.1093/ndt/gfac312

Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024;105(4S):S117-314. https://doi.org/10.1016/j.kint.2023.10.018

Ndumele CE, Rangaswami J, Chow SL, Neeland IJ, Tuttle KR, Khan SS, et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation. 2023;148(20):1606-35. https://doi.org/10.1161/cir.0000000000001184

Cosentino N, Trombara F, Marenzi G. Glomerular filtration rate estimation and all-cause and cardiovascular mortality risk prediction: a progressive refinement in accuracy. Eur J Prev Cardiol. 2023;30(15):1652-3. https://doi.org/10.1093/eurjpc/zwad206

Kovesdy CP, Furth SL, Zoccali C, World Kidney Day Steering Committee. Obesity and kidney disease: hidden consequences of the epidemic. Clin Kidney J. 2017;10(1):1-8. https://doi.org/10.1093/ckj/sfw139

Valtuille R. Cardiovascular risk related to glomerular hyperfiltration in nondiabetic individuals: increasing visibility is crucial. Curr Hypertens Rev. 2023;19(3):139-48. https://doi.org/10.2174/0115734021268893231116045914

Malmgren L, Öberg C, den Bakker E, Leion F, Siódmiak J, Åkesson A, et al. The complexity of kidney disease and diagnosing it - cystatin C, selective glomerular hypofiltration syndromes and proteome regulation. J Intern Med. 2022;293(3):293-308. https://doi.org/10.1111/joim.13589

Levey AS, Becker C, Inker LA. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA. 2015;313(8):837-46. https://doi.org/10.1001/jama.2015.0602

Braam B, Jindal K, Mees D. Hypertension and cardiovascular aspects of dialysis treatment. Clinical management of volume control. Alemania: Pabst Science Publishers; 2011.

Vanholder R, Fouque D, Glorieux G, Heine GH, Kanbay M, Mallamaci F, et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet. Diabetes Endocrinol. 2016;4(4):360-73. https://doi.org/10.1016/s2213-8587(16)00033-4

Kalantar-Zadeh K, Fouque D. Nutritional management of chronic kidney disease. N J Enlg Med. 2017;377(18):1765-76. https://doi.org/10.1056/nejmra1700312

Hajhosseiny R, Khavandi K, Goldsmith DJ. Cardiovascular disease in chronic kidney disease: untying the Gordian knot. Int J Clin Pract. 2013;67(1):14-31. https://doi.org/10.1111/j.1742-1241.2012.02954.x

Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Chronic kidney disease. Lancet. 2021;398(10302):786-802. https://doi.org/10.1016/s0140-6736(21)00519-5

Delanaye P, Melsom T, Ebert N, Bäck SE, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: Why to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016;9(5):700-4. https://doi.org/10.1093/ckj/sfw071

Porrini E, Ruggenenti P, Luis-Lima S, Carrara F, Jiménez A, de Vries APJ, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019;15(3):177-90. https://doi.org/10.1038/s41581-018-0080-9

Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20-9. https://doi.org/10.1056/nejmoa1114248

Levey AS, Coresh J, Tighiouart H, Greene T, Inker LA. Measured and estimated glomerular filtration rate: current status and future directions. Nat Rev Nephrol. 2020;16(1):51-64. https://doi.org/10.1038/s41581-019-0191-y

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

Young BA. Removal of race from estimation of kidney function. Nat Rev Nephrol. 2022;18(4):201-2. https://doi.org/10.1038/s41581-021-00524-1

Delanaye P, Vidal-Petiot E, Björk J, Ebert N, Eriksen BO, Dubourg L, et al. Performance of creatinine-based equations to estimate glomerular filtration rate in White and Black populations in Europe, Brazil, and Africa. Nephrol Dial Transplant. 2023;38(1):106-18. https://doi.org/10.1093/ndt/gfac241

Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016;31(5):798-806. https://doi.org/10.1093/ndt/gfv454

Pottel H, Björk J, Courbebaisse M, Couzi L, Ebert N, Eriksen BO, et al. Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate: a cross-sectional analysis of pooled data. Ann Intern Med. 2021;174(2):183-91. https://doi.org/10.7326/m20-4366

Kidney Disease: Improving Global Outcomes CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):S1-150.

Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Kucuksumer ZS, Ortiz A, et al. Renal hyperfiltration defined by high estimated glomerular filtration rate: A risk factor for cardiovascular disease and mortality. Diabetes Obes Metab. 2019;21(11):2368-83. https://doi.org/10.1111/dom.13831

Wang M. Kidney benefits of SLGT2 inhibitors: evidence from clinical trials. Nat Rev Nephrol. 2023;19(1):3. https://doi.org/10.1038/s41581-022-00659-9

Francis A, Harhay MN, Ong AC, Tummalapalli SL, Ortiz A, Fogo AB, et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat Rev Nephrol. 2024;20(7):473-85. https://doi.org/10.1038/s41581-024-00820-6

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.