Estimation of the variation in glomerular filtration rate based on glycosylated hemoglobin, serum creatinine, and age in type 2 diabetic patients with or without chronic kidney disease
PDF

Keywords

Glycated hemoglobin A
Glomerular filtration rate
Creatinine
Diabetes mellitus
Chronic kidney disease

How to Cite

1.
Aguirre-Quispe W, Arana-Calderón CA. Estimation of the variation in glomerular filtration rate based on glycosylated hemoglobin, serum creatinine, and age in type 2 diabetic patients with or without chronic kidney disease. Rev. Colomb. Nefrol. [Internet]. 2025 Dec. 15 [cited 2025 Dec. 19];12(3). Available from: https://revistanefrologia.org/index.php/rcn/article/view/932

Abstract

Context: The methods currently used to calculate glomerular filtration rate (GFR) underestimate this measurement in the population of diabetic patients, therefore, there is a need to develop diabetes-specific methods for estimating glomerular filtration rate in this specific population.

Objective: This study aims to evaluate a predictive model based on the use of HbA1c to estimate the variability of glomerular filtration rate in diabetic patients with or without chronic kidney disease (CKD).

Methods: We analyzed data from diabetic patients belonging to a prospective follow-up cohort of a renal health surveillance program at a Peruvian hospital. The following factors were included in the multiple linear regression model: age, sex, diastolic blood pressure (DBP), systolic blood pressure (SBP), body mass index (BMI), cholesterol, triglycerides, HDL, LDL, serum creatinine, urinary creatinine, microalbuminuria, hemoglobin, basal glycemia, and HbA1c.

Results: A total of 122 patients were included in the analysis. The final multivariate model, which included variation of HbA1c, age, and creatinine variation, was highly significant ( P < 0.0001), with an adjusted R2 of 80%. The other variables analyzed were not significant predictors of glomerular filtration rate variation, despite showing some correlation. 

Conclusions: The study shows that HbA1c, age, and creatinine variation significantly predict the variation of glomerular filtration rate in diabetic patients with or without chronic kidney disease and opens the possibility of using this model as a prognostic tool for this specific population.

https://doi.org/10.22265/acnef.12.3.932
PDF

References

Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12(2):73-81. https://doi.org/10.1038/nrneph.2015.173

Metsärinne K, Bröijersen A, Kantola I, Niskanen L, Rissanen A, Appelroth T, et al. High prevalence of chronic kidney disease in Finnish patients with type 2 diabetes treated in primary care. Prim Care Diabetes. 2015;9(1):31-38. https://doi.org/10.1016/j.pcd.2014.06.001

Prasannakumar M, Rajput R, Seshadri K, Talwalkar P, Agarwal P, Gokulnath G, et al. An observational, cross-sectional study to assess the prevalence of chronic kidney disease in type 2 diabetes patients in India (START -India). Indian J Endocrinol Metab. 2015;19(4):520-523. https://doi.org/10.4103/2230-8210.157857

Janmohamed MN, Kalluvya SE, Mueller A, Kabangila R, Smart LR, Downs JA, et al. Prevalence of chronic kidney disease in diabetic adult out-patients in Tanzania. BMC Nephrol. 2013;14:183. https://doi.org/10.1186/1471-2369-14-183

Kainz A, Hronsky M, Stel VS, Jager KJ, Geroldinger A, Dunkler D, et al. Prediction of prevalence of chronic kidney disease in diabetic patients in countries of the European Union up to 2025. Nephrol Dial Transplant. 2015;30(Suppl 4):iv113-118. https://doi.org/10.1093/ndt/gfv073

Villena JE. Diabetes Mellitus in Peru. Ann Glob Health. 2015;81(6):765-775. https://doi.org/10.1016/j.aogh.2015.12.018

Levey AS, Inker LA, Coresh J. GFR estimation: From physiology to public health. Am J Kidney Dis. 2014;63(5):820-834. https://doi.org/10.1053/j.ajkd.2013.12.006

Silveiro SP, Araújo GN, Ferreira MN, Souza FDS, Yamaguchi HM, Camargo EG. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation pronouncedly underestimates glomerular filtration rate in type 2 diabetes. Diabetes Care. 2011;34(11):2353-2355. https://doi.org/10.2337/dc11-1282

Camargo EG, Soares AA, Detanico AB, Weinert LS, Veronese FV, Gomes EC, et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is less accurate in patients with type 2 diabetes when compared with healthy individuals. Diabet Med J Br Diabet Assoc. 2011;28(1):90-95. https://doi.org/10.1111/j.1464-5491.2010.03161.x

Lee C-L, Li T-C, Lin S-Y, Wang J-S, Lee I-T, Tseng L-N, et al. Dynamic and dual effects of glycated hemoglobin on estimated glomerular filtration rate in type 2 diabetic outpatients. Am J Nephrol. 2013;38(1):19-26. https://doi.org/10.1159/000351803

Solini A, Manca ML, Penno G, Pugliese G, Cobb JE, Ferrannini E. Prediction of declining renal function and albuminuria in patients with type 2 diabetes by metabolomics. J Clin Endocrinol Metab. 2016;101(2):696-704. https://doi.org/10.1210/jc.2015-3345

Joly D, Choukroun G, Combe C, Dussol B, Fauvel J-P, Halimi J-M, et al. Glycemic control according to glomerular filtration rate in patients with type 2 diabetes and overt nephropathy: A prospective observational study. Diabetes Res Clin Pract. 2015;108(1):120-127. https://doi.org/10.1016/j.diabres.2015.01.029

Pallayova M, Mohammed A, Langman G, Taheri S, Dasgupta I. Predicting nondiabetic renal disease in type 2 diabetic adults: The value of glycated hemoglobin. J Diabetes Complications. 2015;29(5):718-723. https://doi.org/10.1016/j.jdiacomp.2014.12.005

Trivin C, Metzger M, Haymann J-P, Boffa J-J, Flamant M, Vrtovsnik F, et al. Glycated hemoglobin level and mortality in a nondiabetic population with CKD. Clin J Am Soc Nephrol. 2015;10(6):957-964. https://doi.org/10.2215/CJN.08540814

Chen J, Tang H, Huang H, Linsheng L, Wang Y, Liu X, et al. Development and validation of new glomerular filtration rate predicting models for Chinese patients with type 2 diabetes. J Transl Med. 2015;13:317. https://doi.org/10.1186/s12967-015-0674-y

International Diabetes Federation. IDF Diabetes Atlas [Internet]. Brussels: International Diabetes Federation; 2025 [cited 2025 Dec 09]. Available from: https://diabetesatlas.org

Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet Lond Engl. 2011;378(9785):31-40. https://doi.org/10.1016/S0140-6736(11)60679-X

Ramos W, López T, Revilla L, More L, Huamaní M, Pozo M. Results of the epidemiological surveillance of diabetes mellitus in hospitals in Peru, 2012. Rev Peru Med Exp Salud Pública. 2014;31(1):9-15. https://doi.org/10.17843/rpmesp.2014.311.2

Goldhaber-Fiebert JD, Jeon CY, Cohen T, Murray MB. Diabetes mellitus and tuberculosis in countries with high tuberculosis burdens: Individual risks and social determinants. Int J Epidemiol. 2011;40(2):417-428. https://doi.org/10.1093/ije/dyq238

Tsuda A, Ishimura E, Ohno Y, Ichii M, Nakatani S, Machida Y, et al. Poor glycemic control is a major factor in the overestimation of glomerular filtration rate in diabetic patients. Diabet Care. 2014;37(3):596-603. https://doi.org/10.2337/dc13-1899

Pasupulati AK, Nagati V, Paturi ASV, Reddy GB. Non-enzymatic glycation and diabetic kidney disease. Vitam Horm. 2024;125(2024):251-285. https://doi.org/10.1016/bs.vh.2024.01.002

Wu T, Ding L, Andoh V, Zhang J, Chen L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: An update. Life (Basel). 2023;13(2):539. https://doi.org/10.3390/life13020539

Yokoyama H, Kanno S, Takahashi S, Yamada D, Itoh H, Saito K, et al. Determinants of decline in glomerular filtration rate in nonproteinuric subjects with or without diabetes and hypertension. Clin J Am Soc Nephrol. 2009;4(9):1432-1440. https://doi.org/10.2215/CJN.06511208

Ceriello A, De Cosmo S, Rossi MC, Lucisano G, Genovese S, Pontremoli R, et al. Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes. Diabetes Obes Metab. 2017;19(11):1570-1578. https://doi.org/10.1111/dom.12976

Cohen E, Nardi Y, Krause I, Goldberg E, Milo G, Garty M, et al. A longitudinal assessment of the natural rate of decline in renal function with age. J Nephrol. 2014;27(6):635-641. https://doi.org/10.1007/s40620-014-0077-9

Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 2014;85(3):677-685. https://doi.org/10.1038/ki.2013.359

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.