Assessment of the volume status in the patient with acute kidney injury: What does the nephrologist mean by maintaining adequate blood volume?
PDF (Español)

Keywords

Acute kidney injury
Circulatory shock
Hemodynamic collapse
Fluid balance
Hemodynamic monitoring
Extracellular fluid

How to Cite

1.
Marín Restrepo L, Cedeño Arévalo SV, Miño Bernal JF, Álvarez-Echeverry I. Assessment of the volume status in the patient with acute kidney injury: What does the nephrologist mean by maintaining adequate blood volume?. Rev. Colomb. Nefrol. [Internet]. 2024 Oct. 24 [cited 2024 Nov. 6];11(2). Available from: https://revistanefrologia.org/index.php/rcn/article/view/744

Abstract

Background: Acute kidney injury (AKI) is a condition frequently encountered by the nephrologist in the ICU and hospital wards.

Purpose: To explore the main pathophysiological determinants of volume status and their clinical application in the management of critically ill patients.

Methodology: This article explains the physiology of intravenous fluid (IVF) administration, critically discusses current prescription patterns, and examines the most frequently used devices and tests for hemodynamic monitoring and predicting the response to volume administration.

Results: The first cause to rule out is always hypovolemia. Initial management typically involves the early administration of intravenous fluids (IVF), even before nephrologist evaluation. It is essential for nephrologists to understand that additional fluid administration is not without risk and can lead to volume overload. Therefore, IVF administration should only be performed after a positive volume response maneuver.

Conclusions: An algorithm is proposed to guide volume administration in patients with AKI.

https://doi.org/10.22265/acnef.11.2.744
PDF (Español)

References

Ghionzoli N, Sciaccaluga C, Mandoli GE, Vergaro G, Gentile F, D'Ascenzi F, et al. Cardiogenic shock and acute kidney injury: the rule rather than the exception. Heart Fail Rev. 2021;26(3):487-96. https://doi.org/10.1007/s10741-020-10034-0

Liu J, Xie H, Ye Z, Li F, Wang L. Rates, predictors, and mortality of sepsis-associated acute kidney injury: a systematic review and meta-analysis. BMC Nephrol. 2020;21(1):318. https://doi.org/10.1186/s12882-020-01974-8

Xia W, Yi F, Wang Q. Mortality and differential predictive factors of transient and persistent sepsis-associated acute kidney injury. Clin Nephrol. 2023;99(3):119-27. https://doi.org/10.5414/CN110926

Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411-23. https://doi.org/10.1007/s00134-015-3934-7

Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259-65. https://doi.org/10.1097/CCM.0b013e3181feeb15

O'Connor ME, Prowle JR. Fluid overload. Crit Care Clin. 2015;31(4):803-21. https://doi.org/10.1016/j.ccc.2015.06.013

Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422-7. https://doi.org/10.1038/ki.2009.159

Claure-Del Granado R, Mehta RL. Fluid overload in the ICU: evaluation and management. BMC Nephrol. 2016;17(1):109. https://doi.org/10.1186/s12882-016-0323-6

Inkinen N, Jukarainen S, Wiersema R, Poukkanen M, Pettilä V, Vaara ST. Fluid management in patients with acute kidney injury - A post-hoc analysis of the FINNAKI study. J Crit Care. 2021;64:205-10. https://doi.org/10.1016/j.jcrc.2021.05.002

Messmer AS, Zingg C, Müller M, Gerber JL, Schefold JC, Pfortmueller CA. Fluid Overload and Mortality in Adult Critical Care Patients-A Systematic Review and Meta-Analysis of Observational Studies. Crit Care Med. 2020;48(12):1862-70. https://doi.org/10.1097/CCM.0000000000004617

Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. https://doi.org/10.1038/s41572-021-00284-z

Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726-34. https://doi.org/10.1056/NEJMra1208943

Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795-815. https://doi.org/10.1007/s00134-014-3525-z

Serna Flórez J, Serrano Mass D. Injuria renal aguda. En: Restrepo CA, Buitrago CA, Torres J, Serna J, editores. Nefrología básica 2. Colombia: Asocolnef; 2012.

Finfer S, Myburgh J, Bellomo R. Intravenous fluid therapy in critically ill adults. Nat Rev Nephrol. 2018;14(9):541-57. https://doi.org/10.1038/s41581-018-0044-0

Ostermann M, Liu K, Kashani K. Fluid management in acute kidney injury. Chest. 2019;156(3):594-603. https://doi.org/10.1016/j.chest.2019.04.004

Perner A, Prowle J, Joannidis M, Young P, Hjortrup PB, Pettilä V. Fluid management in acute kidney injury. Intensive Care Med. 2017;43(6):807-15. https://doi.org/10.1007/s00134-017-4817-x

Jury D, Shaw AD. Utility of bedside ultrasound derived hepatic and renal parenchymal flow patterns to guide management of acute kidney injury. Curr Opin Crit Care. 2021;27(6):587-92. https://doi.org/10.1097/MCC.0000000000000899

Ostermann M, Bellomo R, Burdmann EA, Doi K, Endre ZH, Goldstein SL, et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2020;98(2):294-309. https://doi.org/10.1016/j.kint.2020.04.020

Romero-González G, Manrique J, Castaño-Bilbao I, Slon-Roblero MF, Ronco C. PoCUS: congestion and ultrasound two challenges for nephrology in the next decade. Nefrología. 2022;42(5):501-5. https://doi.org/10.1016/j.nefro.2021.09.013

Ospina-Tascón GA, Hernandez G, Alvarez I, Calderón-Tapia LE, Manzano-Nunez R, Sánchez-Ortiz AI, et al. Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis. Crit Care. 2020;24(1):52. https://doi.org/10.1186/s13054-020-2756-3

Joosten A, Alexander B, Cannesson M. Defining goals of resuscitation in the critically ill patient. Crit Care Clin. 2015;31(1):113-32. https://doi.org/10.1016/j.ccc.2014.08.006

Persichini R, Lai C, Teboul JL, Adda I, Guérin L, Monnet X. Venous return and mean systemic filling pressure: physiology and clinical applications. Crit Care. 2022;26(1):150. https://doi.org/10.1186/s13054-022-04024-x

Messina A, Bakker J, Chew M, De Backer D, Hamzaoui O, Hernandez G, et al. Pathophysiology of fluid administration in critically ill patients. Intensive Care Med Exp. 2022;10(1):46. https://doi.org/10.1186/s40635-022-00473-4

Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock-part I: physiology. Crit Care Med. 2013;41(1):255-62. https://doi.org/10.1097/CCM.0b013e3182772ab6

Funk DJ, Jacobsohn E, Kumar A. Role of the venous return in critical illness and shock: part II-shock and mechanical ventilation. Crit Care Med. 2013;41(2):573-9. https://doi.org/10.1097/CCM.0b013e31827bfc25

Russell A, Rivers EP, Giri PC, Jaehne AK, Nguyen HB. A physiologic approach to hemodynamic monitoring and optimizing oxygen delivery in shock resuscitation. J Clin Med. 2020;9(7). https://doi.org/10.3390/jcm9072052

Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: A global inception cohort study. Intensive Care Med. 2015;41(9):1529-37. https://doi.org/10.1007/s00134-015-3850-x

Kashani K, Omer T, Shaw AD. The intensivist's perspective of shock, volume management, and hemodynamic monitoring. Clin J Am Soc Nephrol. 2022;17(5):706-16. https://doi.org/10.2215/CJN.14191021

Messina A, Collino F, Cecconi M. Fluid administration for acute circulatory dysfunction using basic monitoring. Ann Transl Med. 2020;8(12):788. https://doi.org/10.21037/atm.2020.04.14

Zarbock A, Nadim MK, Pickkers P, Gomez H, Bell S, Joannidis M, et al. Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol. 2023;19(6):401-17. https://doi.org/10.1038/s41581-023-00683-3

Ding X, Cheng Z, Qian Q. Intravenous fluids and acute kidney injury. Blood Purif. 2017;43(1-3):163-72. https://doi.org/10.1159/000452702

Benes J, Kirov M, Kuzkov V, Lainscak M, Molnar Z, Voga G, et al. Fluid therapy: double-edged sword during critical care? Biomed Res Int. 2015;2015:729075. https://doi.org/10.1155/2015/729075

Frazee E, Kashani K. Fluid management for critically ill patients: a review of the current state of fluid therapy in the intensive care unit. Kidney Dis. 2016;2(2):64-71. https://doi.org/10.1159/000446265

Hammond NE, Taylor C, Finfer S, Machado FR, An Y, Billot L, et al. Patterns of intravenous fluid resuscitation use in adult intensive care patients between 2007 and 2014: An international cross-sectional study. PLoS One. 2017;12(5):e0176292. https://doi.org/10.1371/journal.pone.0176292

Malbrain MLNG, Martin G, Ostermann M. Everything you need to know about deresuscitation. Intensive Care Med. 2022. https://doi.org/10.1007/s00134-022-06761-7

Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care. 2018;8(1):66. https://doi.org/10.1186/s13613-018-0402-x

Wang HL, Shao J, Liu WL, Wu F, Chen HB, Zheng RQ, et al. Initial fluid resuscitation (30 mL/kg) in patients with septic shock: More or less? Am J Emerg Med. 2021;50:309-15. https://doi.org/10.1016/j.ajem.2021.08.016

Lee SJ, Ramar K, Park JG, Gajic O, Li G, Kashyap R. Increased fluid administration in the first three hours of sepsis resuscitation is associated with reduced mortality: a retrospective cohort study. Chest. 2014;146(4):908-15. https://doi.org/10.1378/chest.13-2702

Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47(11):1181-1247. https://doi.org/10.1007/s00134-021-06506-y

Jaehne AK, Rivers EP. Early liberal fluid therapy for sepsis patients is not harmful: hydrophobia is unwarranted but drink responsibly. Crit Care Med. 2016;44(12):2263-9. https://doi.org/10.1097/CCM.0000000000002145

Jacobs R, Jonckheer J, Malbrain MLNG. Fluid overload FADEs away! Time for fluid stewardship. J Crit Care. 2018;48:458-61. https://doi.org/10.1016/j.jcrc.2018.08.027

Tigabu BM, Davari M, Kebriaeezadeh A, Mojtahedzadeh M. Fluid volume, fluid balance and patient outcome in severe sepsis and septic shock: A systematic review. J Crit Care. 2018;48:153-9. https://doi.org/10.1016/j.jcrc.2018.08.018

Kim IY, Kim S, Ye BM, Kim MJ, Kim SR, Lee DW, et al. Effect of fluid overload on survival in patients with sepsis-induced acute kidney injury receiving continuous renal replacement therapy. Sci Rep. 2023;13(1):2796. https://doi.org/10.1038/s41598-023-29926-w

Broyles MG, Subramanyam S, Barker AB, Tolwani AJ. Fluid Responsiveness in the Critically Ill Patient. Adv Chronic Kidney Dis. 2021;28(1):20-8. https://doi.org/10.1053/j.ackd.2021.06.006

Latham HE, Bengtson CD, Satterwhite L, Stites M, Subramaniam DP, Chen GJ, et al. Stroke volume guided resuscitation in severe sepsis and septic shock improves outcomes. J Crit Care. 2017;42:42-6. https://doi.org/10.1016/j.jcrc.2017.06.028

Hernandez G, Luengo C, Bruhn A, Kattan E, Friedman G, Ospina-Tascon GA, et al. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care. 2014;4:30. https://doi.org/10.1186/s13613-014-0030-z

Spiegel R, Gordon D, Marik PE. The origins of the Lacto-Bolo reflex: the mythology of lactate in sepsis. J Thorac Dis. 2020;12(supl. 1):S48-S53. https://doi.org/10.21037/jtd.2019.11.48

Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321(7):654-64. https://doi.org/10.1001/jama.2019.0071

Kattan E, Ospina-Tascón GA, Teboul JL, Castro R, Cecconi M, Ferri G, et al. Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial. Crit Care. 2020;24(1):23. https://doi.org/10.1186/s13054-020-2732-y

Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18-24. https://doi.org/10.1097/SLA.0b013e318256be72

Neyra JA, Li X, Canepa-Escaro F, Adams-Huet B, Toto RD, Yee J, et al. Cumulative fluid balance and mortality in septic patients with or without acute kidney injury and chronic kidney disease. Crit Care Med. 2016;44(10):1891-900. https://doi.org/10.1097/CCM.0000000000001835

Romero-González G, Manrique J, Slon-Roblero MF, Husain-Syed F, De la Espriella R, Ferrari F, et al. PoCUS in nephrology: a new tool to improve our diagnostic skills. Clin Kidney J. 2022;16(2):218-29. https://doi.org/10.1093/ckj/sfac203

Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R, et al. Quantifying systemic congestion with point-of-care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J. 2020;12(1):16. https://doi.org/10.1186/s13089-020-00163-w

Li ZT, Huang DB, Zhao JF, Li H, Fu SQ, Wang W. Comparison of various surrogate markers for venous congestion in predicting acute kidney injury following cardiac surgery: A cohort study. J Crit Care. 2024;79:154441. https://doi.org/10.1016/j.jcrc.2023.154441

Kattan E, Castro R, Miralles-Aguiar F, Hernández G, Rola P. The emerging concept of fluid tolerance: A position paper. J Crit Care. 2022;71:154070. https://doi.org/10.1016/j.jcrc.2022.154070

Hawkins WA, Smith SE, Newsome AS, Carr JR, Bland CM, Branan TN. Fluid stewardship during critical illness: a call to action. J Pharm Pract. 2020;33(6):863-73. https://doi.org/10.1177/0897190019853979

Carr JR, Hawkins WA, Newsome AS, Smith SE, Amber B C, Bland CM, et al. Fluid stewardship of maintenance intravenous fluids. J Pharm Pract. 2022;35(5):769-82. https://doi.org/10.1177/08971900211008261

Hawkins WA, Butler SA, Poirier N, Wilson CS, Long MK, Smith SE. From theory to bedside: Implementation of fluid stewardship in a medical ICU pharmacy practice. Am J Health Syst Pharm. 2022;79(12):984-92. https://doi.org/10.1093/ajhp/zxab453

Malbrain MLNG, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020;10(1):64. https://doi.org/10.1186/s13613-020-00679-3

Magder S. Central venous pressure monitoring. Curr Opin Crit Care. 2006;12(3):219-27. https://doi.org/10.1097/01.ccx.0000224866.01453.43

Cardozo Júnior LCM, Lemos GSD, Besen BAMP. Fluid responsiveness assessment using inferior vena cava collapsibility among spontaneously breathing patients: Systematic review and meta-analysis. Med Intensiva. 2022;47(2):90-8. https://doi.org/10.1016/j.medin.2021.12.015

Gui J, Yang Z, Ou B, Xu A, Yang F, Chen Q, et al. Is the collapsibility index of the inferior vena cava an accurate predictor for the early detection of intravascular volume change? Shock. 2018;49(1):29-32. https://doi.org/10.1097/SHK.0000000000000932

Hamzaoui O, Teboul JL. Correction to: Central venous pressure (CVP). Intensive Care Med. 2022;48(10):1512. https://doi.org/10.1007/s00134-022-06874-z

Hamzaoui O, Teboul JL. Central venous pressure (CVP). Intensive Care Med. 2022;48(10):1498-500. https://doi.org/10.1007/s00134-022-06835-6

Sobczyk D, Nycz K, Andruszkiewicz P, Wierzbicki K, Stapor M. Ultrasonographic caval indices do not significantly contribute to predicting fluid responsiveness immediately after coronary artery bypass grafting when compared to passive leg raising. Cardiovasc Ultrasound. 2015;14(1):23. https://doi.org/10.1186/s12947-016-0065-4

Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774-81. https://doi.org/10.1097/CCM.0b013e31828a25fd

Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172-8. https://doi.org/10.1378/chest.07-2331

The ARISE Investigators and the ANZICS Clinical Trials Group. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496-506. https://doi.org/10.1056/NEJMoa1404380

The PRISM Investigators. Early, goal-directed therapy for septic shock - a patient-level meta-analysis. N Engl J Med. 2017;376(23):2223-34. https://doi.org/10.1056/NEJMoa1701380

The ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683-93. https://doi.org/10.1056/NEJMoa1401602

Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301-11. https://doi.org/10.1056/NEJMoa1500896

Kalantari K, Chang JN, Ronco C, Rosner MH. Assessment of intravascular volume status and volume responsiveness in critically ill patients. Kidney Int. 2013;83(6):1017-28. https://doi.org/10.1038/ki.2012.424

Pinsky MR, Cecconi M, Chew MS, De Backer D, Douglas I, Edwards M, et al. Effective hemodynamic monitoring. Crit Care. 2022;26(1):294. https://doi.org/10.1186/s13054-022-04173-z

Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18(3):256-60. https://doi.org/10.1097/MCC.0b013e3283532b73

Monnet X, Teboul JL. Assessment of volume responsiveness during mechanical ventilation: recent advances. Crit Care. 2013;17(2):217. https://doi.org/10.1186/cc12526

Teboul JL, Monnet X, Chemla D, Michard F. Arterial pulse pressure variation with mechanical ventilation. Am J Respir Crit Care Med. 2019;199(1):22-31. https://doi.org/10.1164/rccm.201801-0088CI

Michard F, Chemla D, Teboul JL. Applicability of pulse pressure variation: how many shades of grey? Crit Care. 2015;19:144. https://doi.org/10.1186/s13054-015-0869-x

Monnet X, Shi R, Teboul JL. Prediction of fluid responsiveness. What's new? Ann Intensive Care. 2022;12(1):46. https://doi.org/10.1186/s13613-022-01022-8

Perel A, Pizov R, Cotev S. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness. Intensive Care Med. 2014;40(6):798-807. https://doi.org/10.1007/s00134-014-3285-9

Kaptein MJ, Kaptein EM. Inferior vena cava collapsibility index: clinical validation and application for assessment of relative intravascular volume. Adv Chronic Kidney Dis. 2021;28(3):218-26. https://doi.org/10.1053/j.ackd.2021.02.003

Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834-7. https://doi.org/10.1007/s00134-004-2233-5

Dodhy AA. Inferior vena cava collapsibility index and central venous pressure for fluid assessment in the critically ill patient. J Coll Physicians Surg Pak. 2021;31(11):1273-7. https://doi.org/10.29271/jcpsp.2021.11.1273

Si X, Xu H, Liu Z, Wu J, Cao D, Chen J, et al. Does respiratory variation in inferior vena cava diameter predict fluid responsiveness in mechanically ventilated patients? a systematic review and meta-analysis. Anesth Analg. 2018;127(5):1157-64. https://doi.org/10.1213/ANE.0000000000003459

Long E, Oakley E, Duke T, Babl FE, (PREDICT) PRiEDIC. Does respiratory variation in inferior vena cava diameter predict fluid responsiveness: a systematic review and meta-analysis. Shock. 2017;47(5):550-9. https://doi.org/10.1097/SHK.0000000000000801

Orso D, Paoli I, Piani T, Cilenti FL, Cristiani L, Guglielmo N. Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis. J Intensive Care Med. 2020;35(4):354-63. https://doi.org/10.1177/0885066617752308

Huang H, Shen Q, Liu Y, Xu H, Fang Y. Value of variation index of inferior vena cava diameter in predicting fluid responsiveness in patients with circulatory shock receiving mechanical ventilation: a systematic review and meta-analysis. Crit Care. 2018;22(1):204. https://doi.org/10.1186/s13054-018-2063-4

Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6(1):111. https://doi.org/10.1186/s13613-016-0216-7

Dinh VA, Ko HS, Rao R, Bansal RC, Smith DD, Kim TE, et al. Measuring cardiac index with a focused cardiac ultrasound examination in the ED. Am J Emerg Med. 2012;30(9):1845-51. https://doi.org/10.1016/j.ajem.2012.03.025

Ayuela Azcarate JM, Clau Terré F, Ochagavia A, Vicho Pereira R. Papel de la ecocardiografía en la monitorización hemodinámica de los pacientes críticos. Med Intensiva. 2012;36(3):220-32. https://doi.org/10.1016/j.medin.2011.11.025

Wang J, Zhou D, Gao Y, Wu Z, Wang X, Lv C. Effect of VTILVOT variation rate on the assessment of fluid responsiveness in septic shock patients. Medicine. 2020;99(47):e22702. https://doi.org/10.1097/MD.0000000000022702

Blanco P, Miralles-Aguiar F. Lack of correlation between the left ventricular outflow tract velocity-time integral and the stroke volume index: Should we be worried about that? Med Intensiva. 2021;45(1):62-3. https://doi.org/10.1016/j.medin.2019.12.008

Slagle D, Panicker A. Advanced Critical Care Ultrasound: Velocity Time Integral Before and After Passive Leg Raise--In Sepsis, When Is Enough (Fluids) Enough? Estados Unidos: Emergency Medicine Residents’ Association; 2021. https://www.emra.org/emresident/article/vti

Sattin M, Burhani Z, Jaidka A, Millington SJ, Arntfield RT. Stroke volume determination by echocardiography. Chest. 2022;161(6):1598-605. https://doi.org/10.1016/j.chest.2022.01.022

Ait-Hamou Z, Teboul JL, Anguel N, Monnet X. How to detect a positive response to a fluid bolus when cardiac output is not measured? Ann Intensive Care. 2019;9(1):138. https://doi.org/10.1186/s13613-019-0612-x

De Backer D, Aissaoui N, Cecconi M, Chew MS, Denault A, Hajjar L, et al. How can assessing hemodynamics help to assess volume status? Intensive Care Med. 2022;48(10):1482-94. https://doi.org/10.1007/s00134-022-06808-9

Sanfilippo F, Messina A, Cecconi M, Astuto M. Ten answers to key questions for fluid management in intensive care. Med Intensiva. 2021;45(9):552-62. https://doi.org/10.1016/j.medin.2020.10.005

Cannesson M, Vallet B, Michard F. Pulse pressure variation and stroke volume variation: from flying blind to flying right? Br J Anaesth. 2009;103(6):896-9. https://doi.org/10.1093/bja/aep321

Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care. 2015;5(1):38. https://doi.org/10.1186/s13613-015-0081-9

Cottis R, Magee N, Higgins DJ. Haemodynamic monitoring with pulse-induced contour cardiac output (PiCCO) in critical care. Intensive Crit Care Nurs. 2003;19(5):301-7. https://doi.org/10.1016/S0964-3397(03)00063-6

Aya HD, Rhodes A, Chis Ster I, Fletcher N, Grounds RM, Cecconi M. Hemodynamic effect of different doses of fluids for a fluid challenge: a quasi-randomized controlled study. Crit Care Med. 2017;45(2):e161-8. https://doi.org/10.1097/CCM.0000000000002067

Roger C, Zieleskiewicz L, Demattei C, Lakhal K, Piton G, Louart B, et al. Time course of fluid responsiveness in sepsis: the fluid challenge revisiting (FCREV) study. Crit Care. 2019;23(1):179. https://doi.org/10.1186/s13054-019-2448-z

Vincent JL, Cecconi M, De Backer D. The fluid challenge. Crit Care. 2020;24(1):703. https://doi.org/10.1186/s13054-020-03443-y

Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;34(5):1333-7. https://doi.org/10.1097/01.CCM.0000214677.76535.A5

Cecconi M, Aya HD, Geisen M, Ebm C, Fletcher N, Grounds RM, et al. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med. 2013;39(7):1299-305. https://doi.org/10.1007/s00134-013-2928-6

Carsetti A, Cecconi M, Rhodes A. Fluid bolus therapy: monitoring and predicting fluid responsiveness. Curr Opin Crit Care. 2015;21(5):388-94. https://doi.org/10.1097/MCC.0000000000000240

Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19:18. https://doi.org/10.1186/s13054-014-0708-5

Cherpanath TG, Hirsch A, Geerts BF, Lagrand WK, Leeflang MM, Schultz MJ, et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44(5):981-91. https://doi.org/10.1097/CCM.0000000000001556

Cherpanath TG. Passive leg raising may serve as the primary method to quickly assess fluid responsiveness in haemodynamically unstable patients. Evid Based Med. 2017;22(2):77-8. https://doi.org/10.1136/ebmed-2016-110623

Cheong I, Otero Castro V, Brizuela M, Früchtenicht MF, Merlo PM, Tamagnone FM. Passive leg raising test to predict fluid responsiveness using the right ventricle outflow tract velocity-time integral through a subcostal view. J Ultrasound. 2022. https://doi.org/10.1007/s40477-022-00719-7

Toupin F, Clairoux A, Deschamps A, Lebon JS, Lamarche Y, Lambert J, et al. Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: a prospective observational study. Can J Anaesth. 2016;63(9):1033-41. https://doi.org/10.1007/s12630-016-0677-z

Georges D, de Courson H, Lanchon R, Sesay M, Nouette-Gaulain K, Biais M. End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: an echocardiographic study. Crit Care. 2018;22(1):32. https://doi.org/10.1186/s13054-017-1938-0

Xu LY, Tu GW, Cang J, Hou JY, Yu Y, Luo Z, et al. End-expiratory occlusion test predicts fluid responsiveness in cardiac surgical patients in the operating theatre. Ann Transl Med. 2019;7(14):315. https://doi.org/10.21037/atm.2019.06.58

Biais M, Larghi M, Henriot J, de Courson H, Sesay M, Nouette-Gaulain K. End-expiratory occlusion test predicts fluid responsiveness in patients with protective ventilation in the operating room. Anesth Analg. 2017;125(6):1889-95. https://doi.org/10.1213/ANE.0000000000002322

Dianti J, Bertoni M, Goligher EC. Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver. Intensive Care Med. 2020;46(12):2338-41. https://doi.org/10.1007/s00134-020-06167-3

Monnet X, Malbrain MLNG, Pinsky MR. The prediction of fluid responsiveness. Intensive Care Med. 2022. https://doi.org/10.1186/s13613-022-01022-8

Wang X, Liu S, Gao J, Zhang Y, Huang T. Does tidal volume challenge improve the feasibility of pulse pressure variation in patients mechanically ventilated at low tidal volumes? A systematic review and meta-analysis. Crit Care. 2023;27(1):45. https://doi.org/10.1186/s13054-023-04336-6

Shapiro NI, Douglas IS, Brower RG, Brown SM, Exline MC, Ginde AA, et al. Early restrictive or liberal fluid management for sepsis-induced hypotension. N Engl J Med. 2023;388(6):499-510.

Reisinger NC, Koratala A. Incorporating training in POCUS in nephrology fellowship curriculum. Clin J Am Soc Nephrol. 2022;17(10):1442-5. https://doi.org/10.2215/CJN.09580822

Koratala A, Ronco C, Kazory A. Multi-organ point-of-care ultrasound in acute kidney injury. Blood Purif. 2022;51(12):967-71. https://doi.org/10.1159/000522652

Taleb Abdellah A, Koratala A. Nephrologist-performed point-of-care ultrasound in acute kidney injury: beyond hydronephrosis. Kidney Int Rep. 2022;7(6):1428-32. https://doi.org/10.1016/j.ekir.2022.02.017

Koratala A, Reisinger N. Venous excess doppler ultrasound for the nephrologist: pearls and pitfalls. Kidney Med. 2022;4(7):100482. https://doi.org/10.1016/j.xkme.2022.100482

Turk M, Robertson T, Koratala A. Point-of-care ultrasound in diagnosis and management of congestive nephropathy. World J Crit Care Med. 2023;12(2):53-62. https://doi.org/10.5492/wjccm.v12.i2.53

Karakala N, Córdoba D, Chandrashekar K, Lopez-Ruiz A, Juncos LA. Point-of-Care Ultrasound in Acute Care Nephrology. Adv Chronic Kidney Dis. 2021;28(1):83-90. https://doi.org/10.1053/j.ackd.2021.06.003

Huan JN, Huang XQ. [Controlling excessive fluid resuscitation in massive burn patients to prevent complications]. Zhonghua Shao Shang Za Zhi. 2022;38(1):13-20.

Boehm D, Menke H. A History of Fluid Management-From "One Size Fits All" to an Individualized Fluid Therapy in Burn Resuscitation. Medicina (Kaunas). 2021;57(2). https://doi.org/10.3390/medicina57020187

Zhu Y, Yang M, Ding L, Chu G, Cheng J, Lv G. Fluid resuscitation based on pulse contour cardiac output monitoring is associated with improved prognosis in adult severe burn patients: a retrospective cohort study. Ann Palliat Med. 2021;10(10):10904-12. https://doi.org/10.21037/apm-21-2587

Daniels M, Fuchs PC, Lefering R, Grigutsch D, Seyhan H, Limper U, et al. Is the Parkland formula still the best method for determining the fluid resuscitation volume in adults for the first 24 hours after injury? - A retrospective analysis of burn patients in Germany. Burns. 2021;47(4):914-21. https://doi.org/10.1016/j.burns.2020.10.001

Messallam AA, Body CB, Berger S, Sakaria SS, Chawla S. Impact of early aggressive fluid resuscitation in acute pancreatitis. Pancreatology. 2021;21(1):69-73. https://doi.org/10.1016/j.pan.2020.11.006

de-Madaria E, Buxbaum JL, Maisonneuve P, García García de Paredes A, Zapater P, Guilabert L, et al. Aggressive or moderate fluid resuscitation in acute pancreatitis. N Engl J Med. 2022;387(11):989-1000. https://doi.org/10.1056/NEJMoa2202884

Sallinen V. Moderate Fluid Resuscitation Is Preferable in Acute Pancreatitis. Gastro Digest. 2022;164(3):493. https://doi.org/10.1053/j.gastro.2022.11.015

Hamud AA, Mudawi K, Shamekh A, Kadri A, Powell C, Abdelgadir I. Diabetic ketoacidosis fluid management in children: systematic review and meta-analyses. Arch Dis Child. 2022;107(11):1023-8. https://doi.org/10.1136/archdischild-2022-324042

Pinheiro Besen BAM, Boer W, Honore PM. Fluid management in diabetic ketoacidosis: new tricks for old dogs? Intensive Care Med. 2021;47(11):1312-4. https://doi.org/10.1007/s00134-021-06527-7

Bergmann KR, Boes M, Velden HV, Abuzzahab MJ, Watson D. Intravenous fluid bolus volume and resolution of acute kidney injury in children with diabetic ketoacidosis. Pediatr Emerg Care. 2023;39(2):67-73. https://doi.org/10.1097/PEC.0000000000002616

Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med. 2018;378(24):2263-74. https://doi.org/10.1056/NEJMoa1801601

Argaiz ER, Rola P, Haycock KH, Verbrugge FH. Fluid management in acute kidney injury: from evaluating fluid responsiveness towards assessment of fluid tolerance. Eur Heart J Acute Cardiovasc Care. 2022;11(10):786-93. https://doi.org/10.1093/ehjacc/zuac104

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Dimensions


PlumX


Downloads

Download data is not yet available.