Update on contrast-induced acute kidney injury in pediatrics
XML-JATS (Español)


Contrast media
kidney diseases
kidney failure

How to Cite

Aranzazu Ceballos AD, Herrera Mejía V, Vanegas JJ, Velez Echeverri C, Ochoa CL. Update on contrast-induced acute kidney injury in pediatrics. Rev. Colomb. Nefrol. [Internet]. 2022 Oct. 29 [cited 2024 Jul. 18];9(3). Available from: https://revistanefrologia.org/index.php/rcn/article/view/584


Background: Contrast-induced acute kidney injury has become a topic of great interest in the medical community worldwide, being the third cause of hospital-acquired acute kidney injury.

Purpose: This article presents a review of the literature in order to update the concepts of this pathology in health personnel who are in contact with the pediatric population that undergoes procedures with contrast media.

Methodology: In this narrative review of the literature, we present the definition, risk factors, clinical approach, and preventive measures of contrast-induced nephropathy in pediatrics.

Results: It is defined as a deterioration in acute renal function after the administration of the contrast medium where other possible etiologies are excluded and a true causal relationship with the substance is established. The risk factors are multiple; nevertheless; Strictly related factors in children have not been fully established. The approach to patients who are going to undergo studies with contrast media begins with a clinical history, physical examination, and laboratory measurements that allow the baseline status of each patient to be evaluated in order to establish preventive measures. The prevention strategies of this condition are multiple; however, there are no evidence-based guidelines on this condition in pediatric patients.

Conclusions: This article presents a review of the literature in order to update the concepts of acute kidney injury in health personnel who are in contact with the pediatric population that undergoes procedures with contrast media.

XML-JATS (Español)


Verghese P. Contrast nephropathy in children. J Pediatr Intensive Care. 2014;3(2):45-52. https://doi.org/10.3233/pic-14090

Sartori P, Rizzo F, Taborda N, Anaya V, Caraballo A, Saleme A, et al. Medios de contraste en imágenes. Rev Argent Radiol. 2013;77(1):49-62.

Cantais A, Hammouda H, Mory O, Patural H, Stephan J, Gulyaeva L, et al. Incidence of contrast-induced acute kidney injury in a pediatric setting: a cohort study. Pediatr Nephrol. 2016;31(8):1355-62. https://doi.org/10.1007/s00467-016-3313-9

Davenport MS, Cohan RH, Khalatbari S, Ellis JH. The challenges in assessing contrast-induced nephropathy: where are we now? AJR Am J Roentgenol. 2014;202(4):784-9. https://doi.org/10.2214/AJR.13.11369

Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, et al. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020;22;2(1):85-93. https://doi.org/10.1016/j.xkme.2020.01.001

American College of Radiology. Manual on contrast media. Version 10.3. Vancouver, Estados Unidos: American College of Radiology, 2018. Disponible en: https://www.acr.org/Clinical-Resources/Contrast-Manual

Windpessl M, Kronbichler A. Contrast-Associated Acute Kidney Injury (CA-AKI) in Children: Special Considerations. Child Kidney Dis. 2019;23:77-85. https://doi.org/10.3339/jkspn.2019.23.2.77

Patzer L. Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol. 2008; 23(12):2159-73. https://doi.org/10.1007/s00467-007-0721-x

Hwang YJ, Hyun MC, Choi BS, Chun SY, Cho MH. Acute kidney injury after using contrast during cardiac catheterization in children with heart disease. J Korean Med Sci. 2014 ag.;29(8):1102-7. https://doi.org/10.3346/jkms.2014.29.8.1102

López I, Carolina M, Fernanda R. Incidencia de la Nefropatía Inducida por Medio de Contraste luego de una Tomografía Computarizada en pediatría. X Congreso Latinoamericano de Nefrología Pediátrica, ALANEPE. Cartagena 2014. Disponible en: https://www.hgm.gov.co/loader.php?lServicio=Tools2&lTipo=descargas&lFuncion=descargar&idFile=780

Bello-Caicedo Y. Frecuencia de nefrotoxicidad y su severidad en niños de unidad de cuidados intensivos e intermedios pediátricos, expuestos a medio de contraste intravenoso, para realización de tomografía computarizada. Bogotá, Universidad Nacional de Colombia, 2013. Disponible en: https://repositorio.unal.edu.co/handle/unal/20647

Bansal S, Patel RN. Pathophysiology of Contrast-Induced Acute Kidney Injury. Interv Cardiol Clin. 2020;9(3):293-8. https://doi.org/10.1016/j.iccl.2020.03.001

Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3:288-96. https://doi.org/10.2215/CJN.02600607

Tumlin J, Stacul F, Adam A, Becker CR, Davidson C, Lameire N, et al. Pathophysiology of contrast-induced nephropathy. Am J Cardiol. 2006 sept. 18;98(6A):14K-20K. https://doi.org/10.1016/j.amjcard.2006.01.020

Shams E, Mayrovitz HN. Contrast-Induced Nephropathy: A Review of Mechanisms and Risks. Cureus. 2021 my. 4;13(5):e14842. https://doi.org/10.7759/cureus.14842

McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F, et al. CIN Consensus Working Panel. Risk prediction of contrast-induced nephropathy. Am J Cardiol. 2006;98(6):27-36. https://doi.org/10.1016/j.amjcard.2006.01.022

Xu X, Nie S, Zhang A, Jianhua M, Liu HP, Xia H, et al. A New Criterion for Pediatric AKI Based on the Reference Change Value of Serum Creatinine. J Am Soc Nephrol. 2018 sept.;29(9):2432-42. https://doi.org/10.1681/ASN.2018010090

Brasch RC. Contrast media toxicity in children. Pediatr Radiol. 2008 my.;38(supl. 2):S281-4. https://doi.org/10.1007/s00247-008-0773-5

KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements. Kidney Int Suppl. 2012;2(1):1-141. https://doi.org/10.1038/kisup.2012.1

Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009 febr.;4(2):337-44. https://doi.org/10.2215/CJN.03530708

Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH, Ma Q, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 2007;22:2089-95. https://doi.org/10.1007/s00467-007-0601-4

Tkaczyk M, Tomczyk D, Jander A, Goreczny S, Moszura T, Dryzek P, et al. Glomerular filtration decrease after diagnostic cardiac catheterisation in children with congenital cardiac malformation - the role of serum creatinine, cystatin C, neutrophil gelatinase and urine output monitoring. Postepy Kardiol Interwencyjnej. 2018;14:67-74. https://doi.org/10.5114/aic.2018.74357

Spasojevic-Dimitrijeva B, Kotur-Stevuljevic J, Dukic M, Paripovic D, Milosevski-Lomic G, Spasojevic-Kalimanovska V, et al. Serum Neutrophil Gelatinase-Associated Lipocalin and Urinary Kidney Injury Molecule-1 as Potential Biomarkers of Subclinical Nephrotoxicity After Gadolinium-Based and Iodinated-Based Contrast Media Exposure in Pediatric Patients with Normal Kidney Function. Med Sci Monit. 2017;23:4299-305. https://doi.org/10.12659/MSM.903255

Benzer M, Alpay H, Baykan Ö, Erdem A, Demir IH. Serum NGAL, cystatin C and urinary NAG measurements for early diagnosis of contrast-induced nephropathy in children. Ren Fail. 2016;38(1):27-34. https://doi.org/10.3109/0886022X.2015.1106846

Zappitelli M, Greenberg JH, Coca SG, Krawczeski CD, Li S, Thiessen-Philbrook HR, et al. Association of definition of acute kidney injury by cystatin C rise with biomarkers and clinical outcomes in children undergoing cardiac surgery. JAMA Pediatr. 2015 jun.;169(6):583-91. https://doi.org/10.1001/jamapediatrics.2015.54

Murphy SW, Barrett BJ, Parfrey P. Contrast nephropathy. JASN. 2000;11(1):177-82. https://doi.org/10.1681/ASN.V111177

Owen RJ, Hiremath S, Myers A. Canadian Association of Radiologists Consensus Guidelines for the Prevention of Contrast-Induced Nephropathy: Update 2012. Can Assoc Radiol J. 2014;65(2):96-105. https://doi.org/10.1016/j.carj.2012.11.002

Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N Engl J Med. 2018;378:603-14. https://doi.org/10.1056/NEJMoa1710933

Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993 jul.;188(1):171-8. https://doi.org/10.1148/radiology.188.1.8511292

McDonald JS, McDonald RJ, Williamson EE, Kallmes DF. Is Intravenous Administration of Iodixanol Associated with Increased Risk of Acute Kidney Injury, Dialysis, or Mortality? A Propensity Score-adjusted Study. Radiology. 2017 nov.;285(2):414-24. https://doi.org/10.1148/radiol.2017161573

Kronbichler A, Shin JI, Windpessl M. What is left to prevent contrast-induced acute kidney injury? No difference between low and iso-osmolar contrast media. Int J Cardiol. 2018;273:94-5. https://doi.org/10.1016/j.ijcard.2018.09.050

Zo'o M, Hoermann M, Balassy C, Brunelle F, Azoulay R, Pariente D, et al. Renal safety in pediatric imaging: randomized, doubleblind phase IV clinical trial of iobitridol 300 versus iodixanol 270 in multidetector CT. Pediatr Radiol. 2011;41:1393-400. https://doi.org/10.1007/s00247-011-2164-6

Trout AT, Dillman JR, Ellis JH, Cohan RH, Strouse PJ. Patterns of intravenous contrast material use and corticosteroid premedication in children--a survey of Society of Chairs of Radiology in Children's Hospitals (SCORCH) member institutions. Pediatr Radiol. 2011 oct.;41(10):1272-83. https://doi.org/10.1007/s00247-011-2112-5

Modi K, Padala SA, Gupta M. Contrast-Induced Nephropathy. 2021 ag. 2. En: StatPearls [Internet]. Treasure Island (Florida, Estados Unidos): StatPearls Publishing; 2022.

Jurado-Román A, Hernández-Hernández F, García-Tejada J, Granda-Nistal C, Molina J, Velázquez M, et al. Role of Hydration in Contrast-Induced Nephropathy in Patients Who Underwent Primary Percutaneous Coronary Intervention. Am J Cardiol. 2015;115:1174-9. https://doi.org/10.1016/j.amjcard.2015.02.004

Liu Y, Li H, Chen S, Chen J, Tan N, Zhou Y, et al. Excessively High Hydration Volume May Not Be Associated with Decreased Risk of Contrast-Induced Acute Kidney Injury After Percutaneous Coronary Intervention in Patients with Renal Insufficiency. J Am Heart Assoc. 2016;5:1-14. https://doi.org/10.1161/JAHA.115.003171

Stevens MA, McCullough PA, Tobin KJ, Speck JP, Westveer DC, Guido-Allen DA, et al. A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: results of the P.R.I.N.C.E. Study. Prevention of Radiocontrast Induced. Nephropathy Clinical Evaluation. J Am Coll Cardiol. 1999;33:403-11. https://doi.org/10.1016/S0735-1097(98)00574-9

Mattathil S, Ghumman S, Weinerman J, Prasad A. Use of the RenalGuard system to prevent contrast-induced AKI: A metaanalysis. J Interv Cardiol. 2017;30:480-7. https://doi.org/10.1111/joic.12417

Katoh H, Nozue T, Horie K, Sozu T, Inoue N, Michishita I. RenalGuard system to prevent contrast-induced acute kidney injury in Japanese patients with renal dysfunction; RESPECT KIDNEY study. Cardiovasc Interv Ther. 2019 abr.;34(2):105-12. https://doi.org/10.1007/s12928-018-0527-8

Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000.20;343(3):180-4. https://doi.org/10.1056/NEJM200007203430304

Asif A, Epstein M. Prevention of radiocontrast-induced nephropathy. Am J Kidney Dis. 2004 jul.;44(1):12-24. https://doi.org/10.1053/j.ajkd.2004.04.001

ACT Investigators. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT). Circulation. 2011 sept. 13;124(11):1250-9. https://doi.org/10.1161/CIRCULATIONAHA.111.038943

Toso A, Leoncini M, Maioli M, Tropeano F, Bellandi F. Pharmacologic Prophylaxis for Contrast-Induced Acute Kidney Injury. Interv Cardiol Clin. 2014 jul.;3(3):405-19. https://doi.org/10.1016/j.iccl.2014.03.010

Assadi F. Acetazolamide for prevention of contrast-induced nephropathy:a new use for an old drug. Pediatr Cardiol. 2006;27:238-42. https://doi.org/10.1007/s00246-005-1132-z

Bayram A, Ulgey A, Baykan A, Narin N, Narin F, Esmaoglu A, et al. The effects of dexmedetomidine on early-stage renal functions in pediatric patients undergoing cardiac angiography using nonionic contrast media: a double-blind, randomized clinical trial. Paediatr Anaesth. 2014;24:426-32. https://doi.org/10.1111/pan.12348

Phan H, Nahata MC. Clinical uses of dexmedetomidine in pediatric patients. Paediatr Drugs. 2008;10(1):49-69. https://doi.org/10.2165/00148581-200810010-00006

Tang C, Hu Y, Gao J, Jiang J, Shi S, Wang J, et al. Dexmedetomidine pretreatment attenuates myocardial ischemia reperfusion induced acute kidney injury and endoplasmic reticulum stress in human and rat. Life Sci. 2020 sept. 15;257:118004. https://doi.org/10.1016/j.lfs.2020.118004

Yu X, Chi X, Wu S, Jin Y, Yao H, Wang Y, et al. Dexmedetomidine Pretreatment Attenuates Kidney Injury and Oxidative Stress during Orthotopic Autologous Liver Transplantation in Rats. Oxid Med Cell Longev. 2016;2016:4675817. https://doi.org/10.1155/2016/4675817

Sha J, Zhang H, Zhao Y, Feng X, Hu X, Wang C, et al. Dexmedetomidine attenuates lipopolysaccharide-induced liver oxidative stress and cell apoptosis in rats by increasing GSK-3?/MKP-1/Nrf2 pathway activity via the ?2 adrenergic receptor. Toxicol Appl Pharmacol. 2019 febr. 1;364:144-52. https://doi.org/10.1016/j.taap.2018.12.017

Wieruszewski PM, Wittwer ED. It's All in the Details: Dexmedetomidine and Acute Kidney Injury After Cardiac Surgery. J Cardiothorac Vasc Anesth. 2020 sept.;34(9):2549. https://doi.org/10.1053/j.jvca.2020.04.018

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.




Download data is not yet available.