Beneficios clínicos de las soluciones biocompatibles de diálisis peritoneal

  • Jesús Montenegro Martínez Hospital de Galdakao, Bilbao
Palabras clave: Diálisis peritoneal, soluciones dialíticas, biocompatibilidad, membrana peritoneal, función renal residual

Resumen

El fallo de la membrana peritoneal se ha atribuido a la inflamación y principalmente a la exposición crónica de las soluciones convencionales de diálisis peritoneal; por tal razón, ante la limitación en el uso a largo plazo de esta técnica dialítica se investigaron nuevas soluciones, más biocompatibles, tanto del continente (plásticos) como del contenido. Respecto al contenido se retiraron los plásticos que llevaban cloruro de polivinilo y ftalatos, por sus efectos nocivos y la profunda huella ecológica de sus residuos. Las características críticas del contenido de las soluciones convencionales de DP vienen determinadas por su pH bajo, por la concentración de lactato, por la concentración alta de glucosa, por los productos de degradación de la glucosa y, por ende, por sus productos finales de la glicación, así como por la osmolaridad. Los cambios introducidos en las soluciones biocompatibles sin PVC son: pH neutro, reemplazo del tampón de lactato por bicarbonato o mezcla de ambos y mínimo contenido de PDG. Dada su mayor biocompatibilidad, las nuevas soluciones afectan menos a la membrana peritoneal, ocasionan una menor inflamación peritoneal, mejoran las defensas peritoneales locales y preservan más tiempo la función renal residual. En la mayoría de los estudios observacionales se registran todos estos beneficios clínicos a través de las soluciones biocompatibles; sin embargo, en los estudios aleatorizados no se demuestran estas enormes ventajas, aunque estos últimos contienen errores. En conclusión, como experto en usar los dos tipos de soluciones durante más de 25 años, desde nuestro punto de vista debemos aconsejar la opción biocompatible porque incorporan algunos beneficios clínicos.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jesús Montenegro Martínez, Hospital de Galdakao, Bilbao

Exjefe de Servicio de Nefrología del Hospital de Galdakao, jubilado en la actualidad. 

Más de 50 artículos publicados en revistas de impacto. Coeditor de varios libros de Diálisis, como el actual: Tratado de Diálisis Peritoneal.

Referencias

1. Ortiz A. Sistemas y soluciones de diálisis peritoneal. En: Montenegro J, Correa-Rotter R, Riella M. C, editores. Tratado de diálisis peritoneal, 2.ª ed. Barcelona: Elsevier; 2015. pp. 129-142.

2. Jorres A, Topley N, Gahl GM. Biocompatibility of peritoneal dialysis fluids. Int J Artif Organs. 1992; 15: 79-83.

3. Montenegro J. Does a ‘biocompatible’ peritoneal dialysis fluid improve survival compared with a standard fluid? Nat Clin Pract Nephrol. 2006 Jan; 2(1): 14-5.

4. Garcia-Lopez E, Lindholm B, Davies S. An update on peritoneal dialysis solutions. Nat Rev Nephrol. 2012 Feb; 8(4): 224-33.

5. Nässberger L, Arbin A, Östelius J. Exposure of patients to phthalates from polyvinyl chloride tubes and bags during dialysis. Nephron. 1987; 45: 286-90.

6. Mettang T, Thomas S, Kiefer T, Fischer FP, Kuhlmann U, Wodarz R, et al. The fate of leached di (2-ethylhexyl) phthalate (DEHP) in patients undergoing CAPD treatment. Perit Dial Int. 1996; 16: 58-62.

7. Fischer F-P, Machleidt C, Rettenmeier AW, Kuhlmann U, Mettang T. Plasticizers and inhibition of leukocyte function in vitro. Perit Dial Int. 1998; 18: 620-5.

8. Mettang T, Pauli-Magnus C, Alscher DM, et al. Influence of plasticizer-free CAPD bags and tubings on serum, urine, and dialysate levels of phthalic acid esters in CAPD patients. Perit Dial Int. 2000 Jan-Feb; 20(1): 80-84.

9. Duwe AK, Vas SI, Weatherhead JW. Effects of the composition of peritoneal dialysis fluid on chemiluminescence, phagocytosis, and bactericidal activity in vitro. Infect Immun. 1981 Jul; 33(1): 130-5.

10. Alobaidi HM, Coles GA, Davies M, Lloyd D. Host defence in continuous ambulatory peritoneal dialysis: the effect of the dialysate on phagocyte function. Nephrol Dial Transplant. 1986; 1(1): 16-2.

11. Dobos GJ, André M, Böhler J, Norgauer J, et al. Inhibition of C5a-induced actin polymerization, chemotaxis, and phagocytosis of human polymorphonuclear neutrophils incubated in a glucose-based dialysis solution. Adv Perit Dial. 1993; 9: 307-11.

12. Van Bronswijk H, Verbrugh HA, Heezius HC, van der Meulen J, Oe PL, Verhoef J. Dialysis fluids and local host resistance in patients on continuous ambulatory peritoneal dialysis. Eur J Clin Microbiol Infect Dis. 1988 Jun;7(3): 368-73.

13. Mortier S, Lameire NH, De Vriese AS. The effects of peritoneal dialysis solutions on peritoneal host defense. Perit Dial Int. 2004 Mar-Apr; 24(2): 123-38.

14. Kaupke CJ, Zhang J, Rajpoot D, Wang J, Zhou XJ, Vaziri ND. Effects of conventional peritoneal dialysates on leukocyte adhesion and CD11b, CD18 and CD14 expression. Kidney Int. 1996 Nov; 50(5): 1676-8.

15. Steinhauer HB, Brugger U, Atmanspacher R, Lubrich-Birkner I, Schollmeyer P. Effect of CAPD dialysate on the release of eicosanoids and cytokines from human peritoneal macrophages. AdvPerit Dial. 1992; 8: 47-52.

16. Jörres A, Topley N, Witowski J, Liberek T, Gahl GM Impact of peritoneal dialysis solutions on peritoneal immune defense. Perit Dial Int. 1993; 13 Suppl 2: S291-4.

17. Topley N, Jörres A, Luttmann W, et al. Human peritoneal mesothelial cells synthesize interleukin-6: induction by IL-1 beta and TNF alpha. Kidney Int. 1993 Jan; 43(1): 226-33.

18. Witowski J, Topley N, Jörres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluilds on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int. 1995 Ja; 47(1):283-93.

19. Douvdevani A, Rapoport J, Konforty A, Yulzari R, Moran A, Chaimovitz C. Intracellular acidification mediates the inhibitory effect of eritoneal dialysate on peritoneal macrophages. J Am Soc Nephrol. 1995 Aug; 6(2): 207-13.

20. Kocyigit I, Unal A, Gungor O, et al. Effects of dialysis solution on the cardiovascular function in peritoneal dialysis patients. Intern Med. 2015; 54(1): 3-10.

21. Topley N, Kaur D, Petersen MM, Jörres A, Passlick-Deetjen J, Coles GA, Williams JD. Biocompatibility of bicarbonate buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney Int. 1996 May; 49(5): 1447-56.

22. Ogata S, Naito T, Yorioka N, Kiribayashi K, Kuratsune M, Kohno N. Effect of lactate and bicarbonate on human peritoneal mesothelial cells, fibroblasts and vascular endothelial cells, and the role of basic fibroblast growth factor. Nephrol Dial Transplant. 2004 Nov; 19(11): 2831-7.

23. De Fijter CW, Verbrugh HA, Peters ED, et al. In vivo exposure to the currently available peritoneal dialysis fluids decreases the function of peritoneal macrophages in CAPD. Clin Nephrol. 1993 Feb; 39(2): 75-80.

24. Himmele R, Jensen L, Fenn D, Ho CH, Sawin DA, Díaz-Buxo JA. A new neutral-pH low-GDP peritoneal dialysis fluid. Perit Dial Int. 2012 Jul-Aug; 32(4): 444-52.

25. Erixon M, Wieslander A, Lindén T, et al. How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int. 2006 Jul-Aug; 26(4): 490-7.

26. Perl J, Nessim SJ, Bargman JM. The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both? Kidney Int. 2011 Apr; 79(8): 814-24.

27. Carozzi S, Nasini MG, Schelotto C, Caviglia PM, Santoni O, Pietrucci A. A biocompatibility study on peritoneal dialysis solution bags for CAPD. Adv Perit Dial. 1993; 9: 138-42.

28. Kristensen SR, Pedersen FB Cytotoxicity testing of two CAPD dialysis fluids in a model system of quiescent fibroblasts. Nephrol Dial Transplant. 1993; 8(2): 163-7.

29. Jörres A, Gahl GM, Topley N, et al. In-vitro biocompatibility of alternative CAPD fluids; comparison of bicarbonate-buffered and glucose-polymer-based solutions. Nephrol Dial Transplant. 1994; 9(7): 785-90.

30. Sundaram S, Cendoroglo M, Cooker LA, Jaber BL, Faict D, Holmes CJ, Pereira BJ. Effect of two-chambered bicarbonate lactate-buffered peritoneal dialysis fluids on peripheral blood mononuclear cell and polymorphonuclear cell function in vitro. Am J Kidney Dis. 1997 Nov; 30(5): 680-9.

31. Plum J, Lordnejad MR, Grabensee B. Effect of alternative peritoneal dialysis solutions on cell viability, B apoptosis/necrosis and cytokine expression in human monocytes. Kidney Int. 1998 Jul; 54(1): 224-35. Erratum in:Kidney Int 1998 Aug; 54(2): 677.

32. Topley N, Mackenzie R, Petersen MM, et al. In vitro testing of a potentially biocompatible continuous ambulatory peritoneal dialysis fluid. Nephrol Dial Transplant. 1991; 6(8): 574-8.

33. Dobos GJ, Böhler J, Kuhlmann J, et al. Bicarbonate-based dialysis solution preserves granulocyte functions. Perit Dial Int. 1994; 14(4): 366-70.

34. Fischer FP, Schenk U, Kiefer T, et al. In vitro effects of bicarbonate-versus lactate-buffered continuous ambulatory peritoneal dialysis fluids on peritoneal macrophage function. Am J Kidney Dis. 1995 Dec; 26(6):924-33.

35. Di Paolo N, Garosi G, Petrini G, Traversari L, Rossi P. Peritoneal dialysis solution biocompatibility testing in animals. Perit Dial Int. 1995; 15(7Suppl): S61-9; discussion S69-70.

36. Jörres A, Bender TO, Finn A, et al. Biocompatibility and buffers: effect of bicarbonate-buffered peritoneal dialysis fluids on peritoneal cell function. Kidney Int. 1998 Dec; 54(6): 2184-93.

37. Lage C, Pischetsrieder M, Aufricht C, Jörres A, Schilling H, Passlick-Deetjen J. First in vitro and in vivo experiences with Stay-Safe Balance, a pH-neutral solution in a dual-chambered bag. Perit Dial Int. 2000; 20Suppl 5:S28-32.

38. Witowski J, Wisniewska J, Korybalska K, et al. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J Am Soc Nephrol. 2001 Nov; 12(11):2434-41.

39. Catalán MP, Reyero A, Egido J, Ortiz A. Acceleration of neutrophil apoptosis by glucose-containing peritoneal dialysis solutions: role of caspases. J Am Soc Nephrol. 2001 Nov; 12(11): 2442-9.

40. Fusshoeller A, Baehr J, Grabensee B, Plum J Biocompatibility of a bicarbonate/lactate-buffered PD fluid tested with a double-chamber cell culture system. Perit Dial Int. 2005 Jul-Aug; 25(4): 387-9.

41. Musi B, Braide M, Carlsson O, et al. Biocompatibilityof peritoneal dialysis fluids: long-term exposure of nonuremicrats. Perit Dial Int. 2004 Jan-Feb; 24(1): 37-47.

42. Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Population analysis of mesothelium in situ and in vivo exposed to bicarbonate-buffered peritoneal dialysis fluid. Nephron. 1996; 73(2): 219-27.

43. MacKenzie RK, Holmes CJ, Moseley A, et al. Bicarbonate/lactate-and bicarbonate-buffered peritoneal dialysis fluids improve ex vivo peritoneal macrophage TNFalphasecretion. J. Am SocNephrol. 1998 Aug; 9(8): 1499-506.

44. Mortier S, De Vriese AS, McLoughlin RM, et al. Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J Am Soc Nephrol. 2003 May; 14(5): 1296-306.

45. Fernandez-Perpen A, Perez-Lozano ML, Bajo MA, et al. Influence of bicarbonate/low-GDP peritoneal dialysis fluid (BicaVera) on in vitro and ex vivo epithelial-to-mesenchymal transition of mesothelial cells. Perit Dial Int. 2012 May-Jun; 32(3): 292-304.

46. Del Peso G. Fernandez-Perpen RS, et al. Biocompatible Dyalysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. A case control study on human biopsies. Perit Dial Int 2016; 36(2):129-134.

47. Del Peso G, Bajo MA. Do biocompatible solutions better protect residual renal function than conventional solutions used in peritoneal dialysis? Nefrologia. 2008; 28Suppl 2: 30-1.

48. Nongnuch A, Assanatham M, Panorchan K, Davenport A. Strategies for preserving residual renal function in peritoneal dialysis patients. Clin Kidney J. 2015 Apr; 8(2): 202-11.

49. Sejoong Kim, Jieun Oh, Suhnggwon Kim, et al. Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1-year study. Nephrol Dial Transplant. 2009; 24(9): 2899-290.

50. Montenegro J, Saracho RM, Martinez IM, Muñoz RI, Ocharan JJ, Valladares E. Long-term clinical experience with pure bicarbonate peritoneal dialysis solutions. Perit Dial Int. 2006 Jan-Feb; 26(1): 89-94.

51. Lee HY, Choi HY, Park HC, et al. Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant. 2006 Oct; 21(10): 2893-9.

52. Ahmad S, Sehmi JS, Ahmad-Zakhi KH, Clemenger M, Levy JB, Brown EA. Impact of new dialysis solutions on peritonitis rates. KidneyInt Suppl. 2006 Nov; (103): S63-6.

53. Montenegro J, Saracho R, Gallardo I, Martinez I, Muñoz R, Quintanilla N. Use of pure bicarbonate-buffered peritoneal dialysis fluid reduces the incidence of CAPD peritonitis. Nephrol Dial Transplant. 2007 Jun; 22(6): 1703-8.

54. Furkert J, Zeier M, Schwenger V. Effects of peritoneal dialysis solutions low in GDPs on peritonitis and exit-site infection rates. Perit Dial Int. 2008 Nov-Dec; 28(6): 637-40.

55. Choi HY, Kim DK, Lee TH, et al. The clinical usefulness of peritoneal dialysis fluids with neutral pH and low glucose degradation product concentration: an open randomized prospective trial. Perit Dial Int 2008; 28: 174-182.

56. Coles GA, O’Donoghue DJ, Pritchard N, et al. A controlled trial of two bicarbonate-containing dialysis fluids for CAPD--final report. Nephrol Dial Transplant. 1998; 13: 3165-3171.

57. Cooker LA, Luneburg P, Holmes CJ, et al. On behalf of the Bicarbonate/Lactate study group. Interleukin-6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate-based peritoneal dialysis solutions. Perit Dial Int. 2001; 21: S102-S107.

58. Fan SL, Pile T, Punzalan S, et al. Randomized controlled study of biocompatible peritoneal dialysis solutions:effect on residual renal function. Kidney Int. 2008; 73: 200-206.

59. Feriani M, Kirchgessner J, La Greca G, et al. Randomized long-term evaluation of bicarbonate-buffered CAPD solution. Kidney Int. 1998; 54: 1731-1738.

60. Fernandez-Perpen A, Perez-Lozano ML, Bajo MA, et al. Influence of bicarbonate/low-GDP peritoneal dialysis fluid (bicavera) on in vitro and ex vivo epithelial-to-mesenchymal transition of mesothelial cells. Perit Dial Int. 2012; 32: 292-304.

61. Fusshoeller A, Plail M, Grabensee B, et al. Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol Dial Transplant. 2004; 19:2101-2106.

62. Haag-Weber M, Kramer R, Haake R, et al. Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrol Dial Transplant. 2010; 25: 2288-2296.

63. Haas S, Schmitt CP, Arbeiter K, et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol. 2003; 14: 2632-2638.

64. Johnson DW, Brown FG, Clarke M, et al. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J Am Soc Nephrol. 2012; 23: 1097-1107.

65. Kim S, Oh J, Chung W, et al. Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1-year study. Nephrol Dial Transplant. 2009; 24: 2899-2908.

66. Kim SG, Kim S, Hwang YH, et al. Could solutions low in glucose degradation products preserve residual renal function in incident peritoneal dialysis patients? A 1-year multicenter prospective randomized controlled trial (Balnet Study). Perit Dial Int. 2008; 28(Suppl 3): S117-S122.

67. Kim SJOJ, Chung WK, Oh KH, et al. Effect of biocompatible PD fluid on preservation of residual renal function incident CAPD patients: two-year extended follow-up study. Nephrol Dial Transplant Plus. 2010; 3: iii175-iii176.

68. Lai KN, Lam MF, Leung JC, et al. A study of the clinical and biochemical profile of peritoneal dialysis fluid low in glucose degradation products. Perit Dial Int. 2012; 32: 280-291.

69. Mactier RA, Sprosen TS, Gokal R, et al. Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int. 1998; 53: 1061-1067.

70. Pajek J, Kveder R, Bren A, et al. Short-term effects of bicarbonate/lactate-buffered and conventional lactate-buffered
dialysis solutions on peritoneal ultrafiltration: a comparative crossover study. Nephrol Dial Transplant. 2009;24: 1617-1625.

71. Rippe B, Simonsen O, Heimburger O, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001; 59: 348-357.

72. Rippe B, Wieslander A, Musi B. Long-term results with low glucose degradation product content in peritoneal dialysis fluids. Contrib Nephrol. 2003; 140: 47-55.

73. Srivastava S, Hildebrand S, Fan SL. Long-term follow-up of patients randomized to biocompatible or conventional peritoneal dialysis solutions show no difference in peritonitis or technique survival. Kidney Int. 2011; 80:986-991.

74. Szeto CCK, Lam C, Leung C, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products - a 1-year randomized control trial. Nephrol Dial Transplant. 2007; 22: 552-559.

75. Tranaeus A. A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution--clinical benefits. The Bicarbonate/Lactate Study Group. Perit Dial Int. 2000; 20: 516-523.

76. Williams JD, Topley N, Craig KJ, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. KidneyInt. 2004; 66: 408-418.

77. Bajo MA, Perez-Lozano ML, Albar-Vizcaino P, et al. Low-GDP peritoneal dialysis fluid (‘balance’) has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrol Dial Transplant. 2011; 26: 282-291.

78. Cho Y, Johnson DW, Badve SV, et al. The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney Int. 2013; 84:969-979.

79. Cho Y, Johnson DW, Craig JC, Strippoli GF, Badve SV, Wiggins KJ. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev. 2014 Mar 27; 3: CD007554.

80. Yohanna S, Alkatheeri AM, Brimble SK, et al. Effect of Neutral-pH, Low-Glucose Degradation Product Peritoneal Dialysis Solutions on Residual Renal Function, Urine Volume, and Ultrafiltration: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol. 2015 Jun 5. pii:CJN.05410514.

81. Wang J, Zhu N, Yuan W. Effect of neutral pH and low-glucose degradation product-containing peritoneal dialysis solution on residual renal function in peritoneal dialysis patients: a meta-analysis. Nephron. 2015; 129(3): 155-63.
Publicado
2016-11-18
Cómo citar
Montenegro Martínez, J. (2016). Beneficios clínicos de las soluciones biocompatibles de diálisis peritoneal. Revista Colombiana De Nefrología, 3(2), 117-119. https://doi.org/10.22265/acnef.3.2.243
Sección
Artículo de revisión